Despite several technological advancements in the last few decades, we are still encountering issues regarding the reproduction of colors on different media and the achievement of color constancy. A possible option of ensuring constant color appearance are color appearance models, namely, the current color appearance model CIECAM02, which, despite having a great potential, is still not fully applied to practical workflows, especially in 3D computer generated graphics we come across on a daily basis. The purpose of this dissertation was to examine advanced color metrics and the CIECAM02 color appearance model to the point where it could have been implemented to 3D computer generated graphics. It was assumed that the CIECAM02 color appearance model can be used in 3D space, but it turned out that different setup parameters and settings influence the rendering calculations and algorithms which can, in turn, affect the rendering of color, too. Test setups were rendered with Blender software and three different rendering engines, namely, Blender Render, Cycles and the plug-in rendering software YafaRay. It was determined that rendering engines do not render color equally, that the CIECAM02 color appearance model can be applied to 3D computer generated graphics, and that by using the CIECAM02 color appearance model, we can significantly improve color matching when changing the lightness of the background. The CIECAM02 color appearance model can be successfully implemented on colors in 3D setups, or can be applied to already rendered 2D visualizations.
|