izpis_h1_title_alt

Krmiljenje moči laserskega varjenja na osnovi konvolucijske nevronske mreže
ID Božič, Alex (Author), ID Jezeršek, Matija (Mentor) More about this mentor... This link opens in a new window, ID Sadikov, Aleksander (Comentor)

.pdfPDF - Presentation file, Download (13,51 MB)
MD5: 54AD60529727BE92022EA72796609B05

Abstract
V magistrskem delu razvijemo krmilnik moči varilnega laserja z maksimalno močjo 400 W na osnovi slikovnih zaznaval, kjer proces varjenja sprotno ocenjujemo s pomočjo konvolucijske nevronske mreže. Na podlagi naučenih modelov s skupno točnostjo 94% na testnih podatkih smo sposobni oceniti vnos energije v pločevino iz nerjavečega jekla AISI 304 s skupno debelino prekrivnih pločevin 1,5 mm. Krmilnik je s pomočjo CNN-modela in PID-krmilnika zmožen krmiliti moč laserja, pri čemer je vselej poudarek na odzivnosti in stabilnosti sistema. Krmilnik se pri določenih parametrih stabilizira že v 0,46 s. S pomočjo dodatnih testov nakažemo smer nadaljnjega dela za izboljšavo in pohitritev krmilnika.

Language:Slovenian
Keywords:krmilniki, nevronske mreže, laserska izhodna moč, kamere, lasersko varjenje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[A. Božič]
Year:2019
Number of pages:XXIII, 72 str.
PID:20.500.12556/RUL-112646 This link opens in a new window
UDC:621.791.725:004.8:681.5(043.2)
COBISS.SI-ID:16956443 This link opens in a new window
Publication date in RUL:30.10.2019
Views:1565
Downloads:269
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Laser welding power control based on convolutional neural networks
Abstract:
In the master thesis we develop and implement power controller of welding laser with maximum power of 400 W based on image sensor, where the process of welding is being continuously estimated with convolutional neural network. Based on learnt models with total accuracy of 94 % on test dataset we are able to estimate heat input in overlaying AISI 304 metal sheet with cumulative thickness of 1,5 mm. Controller developed from PID controller and convolutional neural network is responsively and stably controlling laser power output. Controller in certain cases stabilizes within 0,46 s. Based on additional tests we propose additional possible improvements to increase controller's performance.

Keywords:controllers, neural networks, laser output power, cameras, laser welding

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back