Zaradi naraščajoče potrebe po električni energiji postaja raziskovanje baterijskih materialov vedno bolj pomembno znanstveno področje. Magnezijevi akumulatorji predstavljajo obetaven sistem na področju multivalentnih akumulatorjev, vendar je za njihovo optimizacijo in komercializacijo potrebno razumeti procese na medfazni površini elektroda/elektrolit v odvisnosti od napetosti. Kompleksnost teh procesov je privedla v pomanjkanje teoretičnih pristopov, ki bi omogočili njihovo razumevanje. Računsko dostopno, popolnoma neparametrizirano in široko uporabno teoretično metodologijo, ki temelji na teoriji gostotnega funkcionala in velekanonskem ansamblu, smo razširili z namenom raziskovanja elektrokemijske stabilnosti in termodinamskega obnašanja medfazne površine med elektrolitom in Mg elektrodo. Izračunani Mg$^{2+}$/Mg$^0$ redoks potentical se razlikuje za manj kot 3\% od eksperimentalne vrednosti, kar dokazuje, da metodologija zagotavlja fizikalno smiselne in zanesljive rezultate. Metodologija je uporabljena za študij dveh različnih elektrolitov baziranih na etilen karbonatu (EC) in dimetil etru (DME). Eksperimenti so pokazali, da Mg akumulator z EC elektrolitom ne deluje, med tem ko z DME elektrolitom deluje
dokaj dobro. Naši rezultati pojasnijo atomistične mehanizme, ki
teoretično razložijo eksperimentalno opaženo razliko v obnašanju sistemov. Pridobljeni teoretični vpogledi prispevajo tudi smernice za načrtovanje elektrolitov z optimiziranimi lastnostmi. Da bi razširili razumevanje iz atomistične na mezo-skalo, smo
raziskali spreminjanje morfologije različnih Mg površin.
Pokazali smo, da najbolj zastopana površina ni nujno najbolj stabilna, čeprav je ponavadi edina obravnavana v literaturi. Spreminjanje morfologije mora zato biti raziskano na vseh pogosto prisotnih orientacijah površine. Naši rezultati so pokazali, da je difuzija Mg atomov na Mg anodi počasna na nekaterih pogosto prisotnih orientacijah površine, kar kaže na možnost neenakomernega odlaganja magnezija.
|