Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Kompleksne ortogonalne matrike
ID
Hladnik, Maja
(
Author
),
ID
Slapar, Marko
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/6008/
Image galllery
Abstract
Kompleksne ortogonalne matrike so ortogonalne matrike, pri katerih dopustimo tudi kompleksne elemente. Ker ohranimo pogoj, ki velja za ortogonalne matrike, to niso unitarne matrike, prav tako lastnosti, ki veljajo za unitarne matrike, ne veljajo nujno za kompleksne ortogonalne matrike. V magistrskem delu bomo najprej povzeli osnovne pojme, ki jih bomo potrebovali v nadaljevanju, med drugim, kaj je diagonalizabilnost, Jordanova kletka in Jordanova matrika. Pokazali bomo, kdaj so matrike diagonalizabilne, ter predstavili nekatere lastnosti Jordanovih kletk. V nadaljevanju magistrskega dela bomo za normalne, simetrične in ortogonalne matrike pokazali, kdaj so diagonalizabilne in kdaj niso. V sklepnem delu magistrskega dela se bomo posvetili kompleksnim ortogonalnim matrikam ter pokazali nekaj lastnosti, ki veljajo zanje. Končni cilj magistrskega dela je pokazati, da je Jordanova kanonična forma kompleksnih matrik, ki so podobne kompleksnim ortogonalnim matrikam, direktna vsota Jordanovih kletk le treh različnih oblik.
Language:
Slovenian
Keywords:
diagonalizabilnost
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
PEF - Faculty of Education
Year:
2019
PID:
20.500.12556/RUL-111425
COBISS.SI-ID:
12611657
Publication date in RUL:
02.10.2019
Views:
1158
Downloads:
198
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Complex orthogonal matrices
Abstract:
Complex orthogonal matrices are orthogonal matrices with complex elements. Because the characterisation of complex orthogonal matrices remains the same as the characterisation of orthogonal matrices, these matrices are not unitary and do not have the same properties as unitary matrices. In this master's thesis we will first present some basic definitions which we will need later in the thesis, such as diagonalization, Jordan blocks and Jordan matrices. We will show when matrices are diagonalizable and some of the properties of Jordan blocks. We will continue by showing when normal, symmetric and orthogonal matrices are diagonalizable and when they are not. In the end we will look at complex orthogonal matrices and show some of the properties that they possess. The goal of this thesis is to show that the Jordan canonical form of a complex matrix, similar to complex orthogonal matrix, is a direct sum of Jordan blocks of only three different types.
Keywords:
diagonalization
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back