Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Nonlocal Kirchhoff superlinear equations with indefinite nonlinearity and lack of compactness
ID
Li, Lin
(
Author
),
ID
Rǎdulescu, Vicenţiu
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(620,72 KB)
MD5: FB29CDB3F9A2EB9FEE540D4D47045E33
Image galllery
Abstract
We study the following Kirchhoff equation ▫$$ - \left( 1 + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u + V(x) u = f(x,u), \quad x \in \mathbb{R}^3. $$▫ A feature of this paper is that the nonlinearity ▫$f$▫ and the potential ▫$V$▫ are indefinite, hence sign-changing. Under some appropriate assumptions on ▫$V$▫ and ▫$f$▫, we prove the existence of two different solutions of the equation via the Ekeland variational principle and the mountain pass theorem.
Language:
English
Keywords:
mountain pass
,
Ekeland variational principle
,
nonlocal Kirchhoff equation
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2016
Number of pages:
Str. 325-332
Numbering:
Vol. 17, iss. 6
PID:
20.500.12556/RUL-111102
UDC:
517.956.2
ISSN on article:
1565-1339
DOI:
10.1515/ijnsns-2016-0006
COBISS.SI-ID:
17787993
Publication date in RUL:
24.09.2019
Views:
1704
Downloads:
573
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
International journal of nonlinear sciences and numerical simulation
Shortened title:
Int. j. nonlinear sci. numer. simul.
Publisher:
de Gruyter
ISSN:
1565-1339
COBISS.SI-ID:
10340886
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back