izpis_h1_title_alt

Nonlocal Kirchhoff superlinear equations with indefinite nonlinearity and lack of compactness
ID Li, Lin (Author), ID Rǎdulescu, Vicenţiu (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (620,72 KB)
MD5: FB29CDB3F9A2EB9FEE540D4D47045E33

Abstract
We study the following Kirchhoff equation ▫$$ - \left( 1 + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u + V(x) u = f(x,u), \quad x \in \mathbb{R}^3. $$▫ A feature of this paper is that the nonlinearity ▫$f$▫ and the potential ▫$V$▫ are indefinite, hence sign-changing. Under some appropriate assumptions on ▫$V$▫ and ▫$f$▫, we prove the existence of two different solutions of the equation via the Ekeland variational principle and the mountain pass theorem.

Language:English
Keywords:mountain pass, Ekeland variational principle, nonlocal Kirchhoff equation
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2016
Number of pages:Str. 325-332
Numbering:Vol. 17, iss. 6
PID:20.500.12556/RUL-111102 This link opens in a new window
UDC:517.956.2
ISSN on article:1565-1339
DOI:10.1515/ijnsns-2016-0006 This link opens in a new window
COBISS.SI-ID:17787993 This link opens in a new window
Publication date in RUL:24.09.2019
Views:1704
Downloads:573
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:International journal of nonlinear sciences and numerical simulation
Shortened title:Int. j. nonlinear sci. numer. simul.
Publisher:de Gruyter
ISSN:1565-1339
COBISS.SI-ID:10340886 This link opens in a new window

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back