izpis_h1_title_alt

Latinski kvadrati, porojeni z grupami : delo diplomskega seminarja
ID Sovdat, Ines (Avtor), ID Moravec, Primož (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (388,69 KB)
MD5: 2786D37D3790C94B5C6195432FDFC721

Izvleček
V diplomski nalogi predstavimo latinske kvadrate, izotopijo, kvazigrupe in zanke. Dokažemo, da je vsaka kvazigrupa izotopna zanki, torej vsak izotopni razred vsebuje vsaj eno zanko. Posvetimo se odnosu med kvazigrupami in latinskimi kvadrati ter pokažemo, da je latinski kvadrat ekvivalenten Cayleyjevi tabeli kvazigrupe. Na protiprimeru pokažemo, zakaj trditve ne moremo razširiti na grupe. Predstavimo kriterije, ki zagotavljajo, da je latinski kvadrat izotopen grupi, torej porojen z grupo. Na primerih in protiprimerih podrobneje spoznamo njihovo delovanje. Seznanimo se s štirikotnim kriterijem in njegovimi različicami. Predstavimo Thomsenov pogoj, ki zagotavlja porojenost latinskega kvadrata z Abelovo grupo. Predstavimo tudi kriterij, ki je zasnovan na permutaciji stolpcev in vrstic Cayleyjevih tabel.

Jezik:Slovenski jezik
Ključne besede:latinski kvadrat, izotopija, kvazigrupa, zanka, porojenost z grupo
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2019
PID:20.500.12556/RUL-110800 Povezava se odpre v novem oknu
UDK:512
COBISS.SI-ID:18819929 Povezava se odpre v novem oknu
Datum objave v RUL:20.09.2019
Število ogledov:1921
Število prenosov:274
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Latin squares based on groups
Izvleček:
In this thesis we present Latin squares, isotopy, quasigroups and loops. We prove that each quasigroup is isotopic to a group, therefore each isotopy class contains at least one loop. We focus on a relationship between quasigroups and Latin squares and show equivalence between Latin squares and Cayley tables of a quasigroup. Reason why this can not be generalised to groups is shown on a counterexample. Criteria which ensure Latin square is isotopic to a group, therefore based on a group, are presented. Functioning of those criteria is closely explained using examples and counterexamples. Quadrangle criterion and his variations are presented. Thomsen condition, which ensures a Latin square is based on an Abelian group, is also presented. Criteria based on permutations of rows and columns of a Cayley tabele is also introduced.

Ključne besede:Latin square, isotopy, quasigroup, loop, based on group

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj