izpis_h1_title_alt

Latinski kvadrati, porojeni z grupami : delo diplomskega seminarja
ID Sovdat, Ines (Author), ID Moravec, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (388,69 KB)
MD5: 2786D37D3790C94B5C6195432FDFC721

Abstract
V diplomski nalogi predstavimo latinske kvadrate, izotopijo, kvazigrupe in zanke. Dokažemo, da je vsaka kvazigrupa izotopna zanki, torej vsak izotopni razred vsebuje vsaj eno zanko. Posvetimo se odnosu med kvazigrupami in latinskimi kvadrati ter pokažemo, da je latinski kvadrat ekvivalenten Cayleyjevi tabeli kvazigrupe. Na protiprimeru pokažemo, zakaj trditve ne moremo razširiti na grupe. Predstavimo kriterije, ki zagotavljajo, da je latinski kvadrat izotopen grupi, torej porojen z grupo. Na primerih in protiprimerih podrobneje spoznamo njihovo delovanje. Seznanimo se s štirikotnim kriterijem in njegovimi različicami. Predstavimo Thomsenov pogoj, ki zagotavlja porojenost latinskega kvadrata z Abelovo grupo. Predstavimo tudi kriterij, ki je zasnovan na permutaciji stolpcev in vrstic Cayleyjevih tabel.

Language:Slovenian
Keywords:latinski kvadrat, izotopija, kvazigrupa, zanka, porojenost z grupo
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110800 This link opens in a new window
UDC:512
COBISS.SI-ID:18819929 This link opens in a new window
Publication date in RUL:20.09.2019
Views:1916
Downloads:274
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Latin squares based on groups
Abstract:
In this thesis we present Latin squares, isotopy, quasigroups and loops. We prove that each quasigroup is isotopic to a group, therefore each isotopy class contains at least one loop. We focus on a relationship between quasigroups and Latin squares and show equivalence between Latin squares and Cayley tables of a quasigroup. Reason why this can not be generalised to groups is shown on a counterexample. Criteria which ensure Latin square is isotopic to a group, therefore based on a group, are presented. Functioning of those criteria is closely explained using examples and counterexamples. Quadrangle criterion and his variations are presented. Thomsen condition, which ensures a Latin square is based on an Abelian group, is also presented. Criteria based on permutations of rows and columns of a Cayley tabele is also introduced.

Keywords:Latin square, isotopy, quasigroup, loop, based on group

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back