izpis_h1_title_alt

3-valentni vozliščno tranzitivni grafi : delo diplomskega seminarja
ID Škvarč, Teja (Author), ID Potočnik, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,66 MB)
MD5: 89175437CD6B6D04B97E49DA83B3E5EE

Abstract
Cilj diplomskega dela je določiti vse kubične vozliščno tranzitivne grafe do nekega v naprej danega reda. $G$-vozliščno tranzitivni graf je graf, za katerega velja, da podgrupa $G$ grupe avtomorfizmov grafa deluje tranzitivno na množico vozlišč. Glede na število orbit delovanja vozliščnega stabilizatorja $G_v$ na soseščini $\Gamma(v)$ ločimo tri skupine kubičnih vozliščno tranzitivnih grafov. Prvo skupino, kjer imamo samo eno orbito, nam trditev, ki pravi, da ima delovanje vozliščnega stabilizatorja na soseščini enako orbit kot delovanje grupe $G$ na lokih grafa, poveže s kubičnimi ločno tranzitivnimi grafi. Drugo skupino, kjer imamo tri orbite, nam Sabidussijev izrek poveže s Cayleyjevimi grafi. Tretjo skupino, kjer imamo dve orbiti, pa povežemo s tetravalentnimi ločno tranzitivnimi grafi.

Language:Slovenian
Keywords:kubični grafi, vozliščno tranzitivni grafi, ločno tranzitivni grafi, delovanje grupe na množico, stabilizator, orbita, avtomorfizmi grafa, hiperkocke, Cayleyjevi grafi, Sabidussijev izrek, Magma, dekompozicija grafa na cikle, popolno prirejanje.
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110747 This link opens in a new window
UDC:519.1
COBISS.SI-ID:18820953 This link opens in a new window
Publication date in RUL:19.09.2019
Views:2254
Downloads:325
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cubic vertex-transitive graphs
Abstract:
The paper's aim is to determinate all cubic vertex-transitive graphs on up to certain order which is given in advance. A graph is $G$-vertex-transitive graph, if subgroup $G$ of graph's group of automorphism acts transitively on its vertex-set. Based on the number of orbits of the vertex-stabiliser $G_v$ in its action on the neighbourhood $\Gamma(v)$ we separate cubic vertex-transitive graphs into three groups. The first group is the group of graphs with only one orbit. Theorem, stating that the action of vertex-stabiliser on the neighbourhood has the same number of orbits as the action of group $G$ on arc-set, connects first group's graphs with cubic arc-transitive ones. The second group is the group of graphs with three orbits. Sabidussi's theorem connets second group's graphs with Cayley's graphs. The last group is the group of graphs with two orbits. Graphs from this group are connected with tetravalent arc-transitive graphs.

Keywords:cubic graphs, vertex-transitive graphs, arc-transitive graphs, group acting on set, stabiliser, orbit, graphs automorphisms, hypercubes, Cayley's graphs, Sabidussi's theorem, Magma, cycle decomposition of graph, perfect matching.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back