Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Aproksimacijski algoritmi za računanje povprečne razdalje med točkami : delo diplomskega seminarja
ID
Kotar Celarc, Staš
(
Author
),
ID
Cabello, Sergio
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(427,73 KB)
MD5: 683339AFD0A8FFD6336969607CEBF849
Image galllery
Abstract
V tem diplomskem delu sem raziskal nekaj algoritmov za iskanje približka povprečne razdalje med točkami. Dva algoritma, ki sta opisana, naključno izbirata točke in na podlagi vzorca izračunata približek. Opisal sem tudi algoritem, ki vse točke projicira na naključno izbrano premico. Izkaže se, da lahko na premici vsoto vseh razdalj izračunamo bistveno hitreje kot v splošnem prostoru. Zadnji algoritem pa najprej poišče razcep na dobro ločene pare, ki ga nato uporabi za izračun povprečja. Izkaže se, da pri najhitrejšem algoritmu izberemo vzorec naključnih razdalj in izračunamo njihovo povprečje.
Language:
Slovenian
Keywords:
povprečna razdalja
,
naključna izbira
,
naključna projekcija
,
razcep
na dobro ločene pare
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2019
PID:
20.500.12556/RUL-110399
UDC:
519.6
COBISS.SI-ID:
18723929
Publication date in RUL:
14.09.2019
Views:
1042
Downloads:
158
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Approximation algorithms for computing the average of distance between points
Abstract:
In this dissertation I examined some algorithms for approximating the average distance between points. Two of the algorithms that I examined choose points at random and then compute the approximation based on them. Another algorithm that I examined projects all points onto a randomly chosen line. Then we exploit the fact that we can compute the sum of all distances between points on a single line much quicker than in the general case. The last algorithm that I examined computes a well separated pair decomposition and uses it to compute an approximation. We find that the fastest algorithm chooses a random sample of distances and outputs their average.
Keywords:
average distance
,
random choice
,
random projection
,
well separated pair decomposition
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back