izpis_h1_title_alt

Metoda podpornih vektorjev za grupiranje podatkov in regresija : delo diplomskega seminarja
ID Rudof, Jan (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (407,67 KB)
MD5: 79481A906DC1AA0091889A1AB5845C41
.rR - Appendix, Download (7,55 KB)
MD5: 4985CF7BCE2B9C1DB7D9CAA7AD935CA3

Abstract
V diplomski nalogi se osredotočimo na izpeljavo metode podpornih vektorjev. Najprej se lotimo matematične izpeljave za linearno ločljive podatke, za katere lahko najdemo optimalno ločitveno hiperravnino, ki nam vedno loči podatke v dva razreda. Model nato razširimo na linearno neločljive podatke, kjer pride do problema, saj ni možno najti hiperravnine, ki bi nam optimalno ločila podatke v dva razreda. Uvedemo kazenske spremenljivke in raven šuma, s katerim nadziramo napačno grupirane podatke in tako dovolimo nekaterim podatkom, da padejo v napačni razred. Metodo lahko uporabimo tudi na nelinearnih podatkih, pri čemer moramo za izračun optimalne ločitvene hiperravnine definirati nove funkcije, imenovane jedra. Metodo podpornih vektorjev nato uporabimo na praktičnem primeru. Uporabimo zgodovinske podatke vrednosti delnic 34 tehnoloških podjetij, na katere apliciramo metodo podpornih vektorjev za napovedovanje vrednosti delnic v nekem trenutku v prihodnosti. Napovemo lahko, ali bo vrednost delnice narasla ali padla. S pomočjo te metode nato izračunamo verjetnosti pravilnih napovedi.

Language:Slovenian
Keywords:metoda podpornih vektorjev, klasifikacijska funkcija, mejni pas, napovedovanje vrednosti delnic, jedra
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110390 This link opens in a new window
UDC:519.8
COBISS.SI-ID:18816857 This link opens in a new window
Publication date in RUL:14.09.2019
Views:1620
Downloads:323
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Support vector machines for data grouping and regression
Abstract:
In this thesis we focus on derivation of the support vector machines. We begin with a mathematical derivation for linearly separable data, where we can easily find the optimal separable hyperplane that always separates the data into two classes. We then extend our model to linearly inseparable data, where the problem occurs since it is not possible to find a hyperplane that optimally separates the data into two classes. For this reason we introduce penalty variables and a cost parameter by which we control wrongly clustered data, thus allowing some data to fall into the wrong class. The method can also be used on nonlinear data, where we define new functions, called kernels, to calculate the optimal separation hyperplane. The support vector machines is further used in the practical example. We use historical stock's values of 34 technology companies, on which we apply the support vector machine method to predict the stock's values at a certain point in the future. In our case, we can only predict whether the stock's value will rise or fall. Using the presented method, we can then calculate probabilities of correct forecasts.

Keywords:support vector machines, classification function, margin, stock forecasting, kernel functions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back