izpis_h1_title_alt

Wielandtova karakterizacija funkcije gama : delo diplomskega seminarja
ID Trstenjak, Saša (Author), ID Černe, Miran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (615,54 KB)
MD5: 6A24107F75BC93771B6267195A4ACE7A

Abstract
Glavna tema dela je Wielandtova karakterizacija funkcije $\Gamma$. Wielandtova karakterizacija holomorfno funkcijo $f$, definirano na desni kompleksni polravnini, za katero velja $f(z+1) = zf(z)$, prepozna kot večkratnik funkcije gama, če je le $f$ omejena na navpičnem pasu oblike $\{z \in \mathbb{C} |1 \le \rm {Re}(z) < 2\}$. S pomočjo karakterizacije navedemo alternativen dokaz znanih rezultatov, kot so povezava med Eulerjevima funkcijama gama in beta, Gaussov produkt in Eulerjeva formula, Gaussova produktna formula ter Stirlingova formula z oceno za napako aproksimacije. Dokažemo še, da se da pogoj omejenosti v Wielandtovi karakterizaciji nadomestiti s precej milejšim pogojem, ki zahteva le, da funkcija $f$ na navpičnih pasovih ne raste prehitro.

Language:Slovenian
Keywords:funkcija gama, integral s parametrom, enakomerna konvergenca, holomorfna funkcija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-110359 This link opens in a new window
UDC:517.5
COBISS.SI-ID:18722393 This link opens in a new window
Publication date in RUL:14.09.2019
Views:1432
Downloads:185
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Wielandt’s Characterization of the Gamma Function
Abstract:
The main theme of the work is Wielandt's characterization of the $\Gamma$ function. Wielandt's characterization claims, that a holomorphic function $f$, defined on the right complex half-plane, for which the recursion $f(z+1) = zf(z)$ applies, is a multiple of gamma, if only f is bounded on vertical band $\{z \in \mathbb{C} |1 \le \rm {Re}(z) < 2\}$. Using this characterization, we provide alternative proofs of known results, such as the relation between Euler's functions gamma and beta, Gauss product and Euler's formula, multiplication formula of Gauss and Stirling's formula with an estimate of its error. We prove that the boundedness condition in Wielandt's characterization can be replaced by a weaker assumption, which demands, that the growth rate of function $f$ on vertical bands is not too great.

Keywords:gamma function, integral with parameter, uniform convergence, holomorphic function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back