Successful commercialization of a magnesium battery requires the development of suitable anode and cathode materials and electrolytes that are compatible with metal magnesium and with used cathode material. When using magnesium foil as an anode, we encounter a relatively high resistance resulting from the magnesium surface passivation and the relatively small specific surface area for electrochemical reactions. In this thesis, we have prepared an active magnesium powder using a mechanical milling process, which may also be of interest to industrial production. The magnesium particles were milled together with the addition of organic solvents and magnesium salts. The particle size reduction and the degree of contamination of magnesium were examined by scanning electron microscopy and emission dispersion spectroscopy. Electrochemical activity of magnesium powder was determined by galvanostatic measurements in 0.4 M solution of Mg(TFSI)2: MgCl2 in 1-methoxy-2-(2-methoxy ethoxy)ethane (DIG) and later in 0.8 M solution of Mg(TFSI)2 -2MgCl2 in 1,2-dimethoxyethane (DME). The results show that the most suitable milling solvent for magnesium is tetrahydrofuran (THF). With the addition of reductive spices, we can reduce contamination of milled powder with organic side products. Thus obtained powder was further used for preparation of composite electrodes of magnesium powder with addition of carbon black and binder. First, we checked the efficiency of stripping and deposition magnesium on composite anodes, which we prepared from different powders. These electrodes exhibited lower resistivity than magnesium foil. We also checked their electrochemical stability whit a changing amount of binder and carbon black. The best performing electrode composite had a composition of 88: 10: 2 between Mg powder, carbon black and binder. Different powders and composite anodes were eventually tested in laboratory batteries, where magnesium was used as the anode and redox-active organic material as the cathode. The results showed that more stable performance is achieved with larger magnesium particles because they are having a smaller active surface.
|