izpis_h1_title_alt

Ocenjevanje atributov s posplošitvami algoritma Relief
ID Vivod, Jernej (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,58 MB)
MD5: 4F5825071DB01A14650AD5EF315A86EE

Abstract
Algoritem Relief in njegove posplošitve so filtrirne metode vrednotenja atributov, ki jih odlikuje občutljivost na medatributne interakcije. Diplomsko delo pričnemo z opisom problematike izbora atributov in podamo motivacijo za uporabo algoritma Relief in njegovih posplošitev. Opišemo, po našem prepričanju, danes najpogosteje uporabljene posplošitve algoritma Relief v klasifikaciji. Predstavimo koncept naučenih metrik in podrobneje predstavimo različnost na osnovi mase ter preostale naučene metrike, ki jih uporabimo v kontekstu opisanih algoritmov. Diplomsko delo sklenemo z empiričnim vrednotenjem implementiranih algoritmov in metrik, kjer uporabimo Bayesov hierarhični korelirani t-test in izris rezultatov prečnega preverjanja za različne velikosti množic najbolje ocenjenih atributov. Na koncu izpostavimo omejitve uporabljene metodologije vrednotenja in podamo iztočnice za nadaljnje raziskovalno delo.

Language:Slovenian
Keywords:strojno učenje, umetna inteligenca, vrednotenje atributov, rangiranje atributov, izbor atributov, klasifikacija
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-110081 This link opens in a new window
COBISS.SI-ID:1538334915 This link opens in a new window
Publication date in RUL:11.09.2019
Views:2116
Downloads:314
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Feature evaluation with generalizations of Relief algorithm
Abstract:
The Relief algorithm and its generalizations form a group of filter-based feature evaluation algorithms that are sensitive to feature interactions. We describe the problem of feature selection and present motivation for the application of Relief and its generalizations. We describe all commonly used generalizations of Relief used in classification. We describe the concept of learned metric functions and describe mass-based dissimilarity as well as other learned metric functions, studied in the context of described algorithms. We conclude the thesis with an empirical evaluation of implemented algorithms and metrics. We use the Bayesian hierarchical correlated t-test and plot cross validation results against different cardinalities of feature subsets. We analyze the limitations and assumptions of our evaluation methodology and present ideas for further research.

Keywords:machine learning, artificial intelligence, feature evaluation, feature ranking, feature selection, classification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back