izpis_h1_title_alt

Spektralna funkcija magnetne nečistoče
ID Pavešić, Luka (Author), ID Žitko, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (13,50 MB)
MD5: A69EC03BEC7A4C357136E3CE3770D991

Abstract
Obravnavam magnetno nečistočo, sklopljeno s kovinsko oz. superprevodno podlago. Sistem opišem s Kondovim modelom. Formuliran je problem, nato pa je predstavljena metoda numerične renormalizacijske grupe, ki je standardna numerična metoda na tem področju. Uporabil sem jo za izračun spektralne funkcije nečistoče, ki ustreza lokalni gostoti stanj. V njej se pojavi resonančni vrh pri Fermijevi energiji, ki je tipičen za Kondov pojav. V primeru s kovinsko podlago nas zanima, kako se vrh obnaša v odvisnosti od premika energijskih nivojev nečistoče. Opazimo, da se Kondov pojav zaduši, če nečistočo zmotimo z motnjo, ki je po velikosti primerljiva s Kondovo energijsko skalo. V primeru s superprevodno podlago sem se osredotočil na diskretna stanja, ki jih opazimo v superprevodni reži. Položaj in razcep vrhov razložim s pomočjo diagramov energij najnižjih v zbuditev sistema.

Language:Slovenian
Keywords:Kondov pojav, numeriLna renormalizacijska grupa, spektralna funkcija, Yu-Shiba-Rusinova stanja
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109777 This link opens in a new window
COBISS.SI-ID:3368548 This link opens in a new window
Publication date in RUL:08.09.2019
Views:1589
Downloads:317
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Spectral function of a magnetic impurity
Abstract:
The problem of a magnetic impurity, coupled to a metal or a superconducting bath is treated. The system is described using the Kondo model. We formulate the problem, and present the numerical renormalization group method, a standard numerical method in the field. It is employed for calculations of the impurity spectral function, which corresponds to a local density of states. We observe a resonance peak at the Fermi level, which turns out to be typical for the Kondo effect. In the case of the metal bath, we are mostly interested in the behaviour of the resonance peak and its dependence on the impurity energy levels. The Kondo effect fades when we disturb the impurity with a perturbation, comparable in strenght to the coupling energy scale. In the superconducting bath case, focus is on the discrete states that appear in the superconducting gap. Position and splitting of the subgap states is understood using the energy level diagrams of the lowest laying excitations of the system.

Keywords:Kondo effect, numerical renormalization group, spectral function, Yu-Shiba-Rusinov states

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back