izpis_h1_title_alt

Analiza zaznave čustev v fotografskem portretu
ID Strgar, Matic (Author), ID Ahtik, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,52 MB)
MD5: 5C869AFFE7C20BACC949BD4011CF8A13

Abstract
Namen diplomskega dela je bil proučiti in analizirati zaznavo čustev v fotografskem portretu. Ob enem pa tudi, da bolje spoznamo načine slikanja v studiu in sestavljanja testiranja, tako, da se znebimo čim več neželenih spremenljivk in ohranimo čim bolj natančne rezultate. Najprej smo v teoretičnem delu raziskali kako ljudje prikazujemo in prepoznamo čustva. Spoznali smo teorijo mikroizrazov, s katerimi ljudje podzavestno izražamo emocije in različne načine osvetljevanja modela v studiu. Nazadnje smo se seznanili še s tehnologijo sledenja očesnih premikov in spoznali njene zahteve in načine za sestavljanje testiranj. Delo smo začeli s fotografiranjem v studiu. Modele smo med prikazovanjem osnovnih emocij (veselje, jeza, žalost, strah in gnus) osvetljevali in fotografirali z uporabo dveh različnih osvetlitev – s trdo osvetlitvijo, ki ima temne in ostro določene sence in z mehko osvetlitvijo, kjer na obrazu ni senc. Fotografije smo nato minimalno obdelali, pri čemer smo bili pozorni, da smo vse obdelali na enak način in se tako znebili pojavi novih spremenljivk. S fotografijami smo nato sestavili test na tehnologiji sledenja očesnih premikov. Testirali smo 103 ljudi in rezultate testov izvozili v program Excel, kjer smo jih obdelali in jih primerno uredili. Nazadnje smo rezultate na podlagi teoretičnega dela še analizirali in napisali izsledke raziskave. Končni izdelek je bila serija štiridesetih fotografij, ki prikazujejo osnovne emocije in rezultati raziskave o prepoznavi čustev na podlagi teh fotografij.

Language:Slovenian
Keywords:portretna fotografija, prikazovanje čustev, mikroizrazi, studijska osvetlitev, tehnologija sledenja očesnih premikov
Work type:Bachelor thesis/paper
Organization:NTF - Faculty of Natural Sciences and Engineering
Year:2019
PID:20.500.12556/RUL-109773 This link opens in a new window
Publication date in RUL:08.09.2019
Views:1333
Downloads:384
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of Emotion Perception in Portrait Photography
Abstract:
The aim of the diploma thesis was to study and analyse emotion perception in portrait photography. In addition, we studied the different means of taking photographs and creating surveys in a way that avoids introducing any new unwanted variables. In the theoretical part of the diploma thesis we first examined how people show and recognise emotions. We familiarised ourselves with Paul Ekman’s theory of micro expressions and with the different light setups we can use to illuminate our subjects. Moreover, we familiarised ourselves with eyetracking technology and the different options and limitations one has when compiling an eyetracker test. We invited our models to a studio where we were taking photographs. We instructed the models to portray five different emotions (happiness, anger, sadness, fear and disgust) and shot each of them twice, using first hard and then soft light. After the images were shot, we imported them into the computer for postprocessing, where we were cautious to apply all the changes to all photographs preventing the introduction of any new unwanted variables. With the photographs now edited we were ready to start making the eyetracker tests. We tested 103 people and exported the collected data to an Excel spreadsheet where we sorted and analysed the data. Finally, we summarised our findings based on the theoretical part and wrote down our conclusions. The final product of our research was a series of forty photographs which depict five basic emotions and results regarding emotion perception in portrait photography.

Keywords:portrait photography, emotion perception, micro expressions, studio lightning, eyetracking technology

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back