izpis_h1_title_alt

Regresijski modeli v biatlonu : delo diplomskega seminarja
ID Žavbi Kunaver, Anja (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (538,66 KB)
MD5: 47C45708D5D8345D70DE718880D135B9
.zipZIP - Appendix, Download (13,84 KB)
MD5: 9E88CEE19A855AE7A2FEF3630BFFADA5
.pdfPDF - Appendix, Download (177,61 KB)
MD5: 1BEB6C603CE88F8BBFFEE48745286772

Abstract
Delo diplomskega seminarja je raziskovalne narave. S pomočjo testiranj slovenske reprezentance biatloncev in tekačev na smučeh so predstavljeni različni modeli, izdelani v programskem jeziku R. Izdelava modelov temelji na teoriji mešanih linearnih modelov in uporabi treh metod - metode najmanjših kvadratov, navadne in restringirane metode največjega verjetja. Za preverjanje ustreznosti modelov so uporabljene različne mere, kot najpomembnejši pa je upoštevan determinacijski koeficient multiple regresije. Poudarek je na napovedi maksimalne porabe kisika tekmovalcev, kjer se kot statistično značilne spremenljivke izkažejo mišičje, višina in starost testirancev. Model tekmovalne uspešnosti je predstavljen zgolj kot zanimivost, saj bi bilo za dober model potrebno pridobiti veliko več podatkov. Na podlagi podatkov, pridobljenih iz 24-ih minut testiranja na tekoči preprogi se da pojasniti več kot 80% variabilnosti v doseženem času testiranja, maksimalni vrednosti ventilacije, porabe kisika in srčnega utripa. Vse dobljene modele bi se dalo izboljšati z večjo skupino testirancev.

Language:Slovenian
Keywords:Normalni linearni mešani modeli, linearna regresija, metoda največjega verjetja, napoved maksimalne aerobne kapacitete, uspešnost v biatlonu.
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109756 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18720089 This link opens in a new window
Publication date in RUL:08.09.2019
Views:1171
Downloads:324
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Regression models in biathlon
Abstract:
This bachelor's thesis is based on real-life data that was gathered from tests of members of Slovenian representative teams of biathletes and cross country skiers. We presented different kinds of models which were implemented in programming language R. Most of the time we employ Gaussian linear mixed models. Estimations were made with three different types of methods - least squares method, maximum likelihood method, and restricted maximum likelihood method. For testing goodness of fit of the investigated models we use different measures, most importantly the coefficient of determination. The emphasis is on prediction of the maximum rate of oxygen consumption. We find that muscular tissue, height, and age of a competitor are statistically important covariates for this prediction. The model of competitive success is presented only as an interesting fact. For a good model much more data should be available. From results gathered from 24 minutes of measuring on the treadmill we can explain over 80% of variability of maximum testing time, maximum ventilation, maximum rate of oxygen consumption, and maximum heart rate. All models could be improved with more tests and participants.

Keywords:Gaussian linear mixed models, linear regression, Maximum Likelihood method, prediction of maximum rate of oxygen consumption, successfulness in biathlon.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back