izpis_h1_title_alt

On the Alexandroff-Borsuk problem
ID Cencelj, Matija (Author), ID Karimov, Umed H. (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (563,72 KB)
MD5: 21FD21EBF257CCA9492A3182A224843A

Abstract
We investigate the classical Alexandroff-Borsuk problem in the category of non-triangulable manifolds: Given an ▫$n$▫-dimensional compact non-triangulable manifold ▫$M^n$▫ and ▫$\varepsilon > 0$▫, does there exist an ▫$\varepsilon$▫-map of ▫$M^n$▫ onto an ▫$n$▫-dimensional finite polyhedron which induces a homotopy equivalence?

Language:English
Keywords:ANR, finite polyhedron, homotopy equivalence, ▫$\varepsilon$▫-map, cellular map, almost-smooth manifold, ▫$|E_8|$▫-manifold, Kirby-Siebenmann class, Galewski-Stern obstruction, non-triangulable manifold, Alexandroff-Borsuk Manifold Problem
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2017
Number of pages:Str. 114-120
Numbering:Vol. 221
PID:20.500.12556/RUL-109543 This link opens in a new window
UDC:515.12
ISSN on article:0166-8641
DOI:http://dx.doi.org/10.1016/j.topol.2017.02.052 This link opens in a new window
COBISS.SI-ID:17958233 This link opens in a new window
Publication date in RUL:05.09.2019
Views:1144
Downloads:482
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Topology and its Applications
Shortened title:Topol. appl.
Publisher:North-Holland
ISSN:0166-8641
COBISS.SI-ID:26538752 This link opens in a new window

Secondary language

Language:Slovenian
Title:O problemu Aleksandrova in Borsuka
Abstract:
Obravnavamo klasični problem Aleksandrova in Borsuka v kategoriji netriangulabilnih mnogoterosti: ali za dano ▫$n$▫-dimenzionalno kompaktno netriangulabilno mnogoterost ▫$M^n$▫ in dani ▫$\varepsilon > 0$▫ obstaja ▫$\varepsilon$▫-preslikava ▫$M^n$▫ na ▫$n$▫-dimenzionalni končni polieder, ki inducira homotopsko ekvivalenco?

Keywords:ANR, končni polieder, homotopska ekvivalenca, ▫$\varepsilon$▫-preslikava, celularna preslikava, skoraj gladka mnogoterost, $|E_8|$-mnogoterost, Kirby-Siebenmannov razred, Galewski-Sternova ovira, netriangulabilna mnogoterost, problem Aleksandrova in Borsuka o mnogoterostih

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back