izpis_h1_title_alt

On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity
ID Liang, Sihua (Avtor), ID Repovš, Dušan (Avtor), ID Zhang, Binlin (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (715,21 KB)
MD5: 38C3C2BBC07D533DFAE73675C51E3A7B

Izvleček
In this paper, we consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity ▫$$\begin{cases} \varepsilon^{2s}M([u]^2_{s, A_{\varepsilon}})(-\Delta)^s_{A_\varepsilon} u + V(x)u = |u|^{{2^\ast_s}-2}u + h(x, |u|^2)u, \quad x \in \mathbb{R}^N ,\\ u(x) \to 0, \quad \text{as} \; |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_{A_\varepsilon}$▫ is source is the fractional magnetic operator with ▫$0 < s < 1$▫, ▫$2^\ast_s = 2N/(N - 2s)$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+$▫ is a continuous nondecreasing function, ▫$V \colon \mathbb{R}^N \to \mathbb{R}^+_0$▫ and ▫$A \colon \mathbb{R}^N \to \mathbb{R}^N$▫ are the electric and magnetic potentials, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that ▫$\varepsilon < \mathcal{E}$▫; and (ii) for any ▫$m^\ast \in \mathbb{N}$▫, has ▫$m^\ast$▫ pairs of solutions if ▫$\varepsilon < \mathcal{E}_{m^\ast}$▫, where ▫$\mathcal{E}$▫ and $▫\mathcal{E}_{m^\ast}$▫ are sufficiently small positive numbers. Moreover, these solutions ▫$u_\varepsilon \to 0$▫ as ▫$\varepsilon \to 0$▫.

Jezik:Angleški jezik
Ključne besede:fractional Schrödinger-Kirchhoff equation, fractional magnetic operator, critical nonlinearity, variational methods
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:2018
Št. strani:Str. 1778-1794
Številčenje:Vol. 75, iss. 1
PID:20.500.12556/RUL-109503 Povezava se odpre v novem oknu
UDK:517.956
ISSN pri članku:0898-1221
DOI:10.1016/j.camwa.2017.11.033 Povezava se odpre v novem oknu
COBISS.SI-ID:18207577 Povezava se odpre v novem oknu
Datum objave v RUL:04.09.2019
Število ogledov:1253
Število prenosov:516
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers & mathematics with applications
Skrajšan naslov:Comput. math. appl.
Založnik:Elsevier
ISSN:0898-1221
COBISS.SI-ID:15336965 Povezava se odpre v novem oknu

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj