izpis_h1_title_alt

On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity
ID Liang, Sihua (Author), ID Repovš, Dušan (Author), ID Zhang, Binlin (Author)

.pdfPDF - Presentation file, Download (715,21 KB)
MD5: 38C3C2BBC07D533DFAE73675C51E3A7B

Abstract
In this paper, we consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity ▫$$\begin{cases} \varepsilon^{2s}M([u]^2_{s, A_{\varepsilon}})(-\Delta)^s_{A_\varepsilon} u + V(x)u = |u|^{{2^\ast_s}-2}u + h(x, |u|^2)u, \quad x \in \mathbb{R}^N ,\\ u(x) \to 0, \quad \text{as} \; |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_{A_\varepsilon}$▫ is source is the fractional magnetic operator with ▫$0 < s < 1$▫, ▫$2^\ast_s = 2N/(N - 2s)$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+$▫ is a continuous nondecreasing function, ▫$V \colon \mathbb{R}^N \to \mathbb{R}^+_0$▫ and ▫$A \colon \mathbb{R}^N \to \mathbb{R}^N$▫ are the electric and magnetic potentials, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that ▫$\varepsilon < \mathcal{E}$▫; and (ii) for any ▫$m^\ast \in \mathbb{N}$▫, has ▫$m^\ast$▫ pairs of solutions if ▫$\varepsilon < \mathcal{E}_{m^\ast}$▫, where ▫$\mathcal{E}$▫ and $▫\mathcal{E}_{m^\ast}$▫ are sufficiently small positive numbers. Moreover, these solutions ▫$u_\varepsilon \to 0$▫ as ▫$\varepsilon \to 0$▫.

Language:English
Keywords:fractional Schrödinger-Kirchhoff equation, fractional magnetic operator, critical nonlinearity, variational methods
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:2018
Number of pages:Str. 1778-1794
Numbering:Vol. 75, iss. 1
PID:20.500.12556/RUL-109503 This link opens in a new window
UDC:517.956
ISSN on article:0898-1221
DOI:10.1016/j.camwa.2017.11.033 This link opens in a new window
COBISS.SI-ID:18207577 This link opens in a new window
Publication date in RUL:04.09.2019
Views:1252
Downloads:516
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Computers & mathematics with applications
Shortened title:Comput. math. appl.
Publisher:Elsevier
ISSN:0898-1221
COBISS.SI-ID:15336965 This link opens in a new window

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back