Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity
ID
Liang, Sihua
(
Author
),
ID
Repovš, Dušan
(
Author
),
ID
Zhang, Binlin
(
Author
)
PDF - Presentation file,
Download
(715,21 KB)
MD5: 38C3C2BBC07D533DFAE73675C51E3A7B
Image galllery
Abstract
In this paper, we consider the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity ▫$$\begin{cases} \varepsilon^{2s}M([u]^2_{s, A_{\varepsilon}})(-\Delta)^s_{A_\varepsilon} u + V(x)u = |u|^{{2^\ast_s}-2}u + h(x, |u|^2)u, \quad x \in \mathbb{R}^N ,\\ u(x) \to 0, \quad \text{as} \; |x| \to \infty, \end{cases}$$▫ where ▫$(-\Delta)^s_{A_\varepsilon}$▫ is source is the fractional magnetic operator with ▫$0 < s < 1$▫, ▫$2^\ast_s = 2N/(N - 2s)$▫, ▫$M \colon \mathbb{R}^+_0 \to \mathbb{R}^+$▫ is a continuous nondecreasing function, ▫$V \colon \mathbb{R}^N \to \mathbb{R}^+_0$▫ and ▫$A \colon \mathbb{R}^N \to \mathbb{R}^N$▫ are the electric and magnetic potentials, respectively. By using the fractional version of the concentration compactness principle and variational methods, we show that the above problem: (i) has at least one solution provided that ▫$\varepsilon < \mathcal{E}$▫; and (ii) for any ▫$m^\ast \in \mathbb{N}$▫, has ▫$m^\ast$▫ pairs of solutions if ▫$\varepsilon < \mathcal{E}_{m^\ast}$▫, where ▫$\mathcal{E}$▫ and $▫\mathcal{E}_{m^\ast}$▫ are sufficiently small positive numbers. Moreover, these solutions ▫$u_\varepsilon \to 0$▫ as ▫$\varepsilon \to 0$▫.
Language:
English
Keywords:
fractional Schrödinger-Kirchhoff equation
,
fractional magnetic operator
,
critical nonlinearity
,
variational methods
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2018
Number of pages:
Str. 1778-1794
Numbering:
Vol. 75, iss. 1
PID:
20.500.12556/RUL-109503
UDC:
517.956
ISSN on article:
0898-1221
DOI:
10.1016/j.camwa.2017.11.033
COBISS.SI-ID:
18207577
Publication date in RUL:
04.09.2019
Views:
1252
Downloads:
516
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Computers & mathematics with applications
Shortened title:
Comput. math. appl.
Publisher:
Elsevier
ISSN:
0898-1221
COBISS.SI-ID:
15336965
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back