izpis_h1_title_alt

Izpeljava metod za iskanje ničel polinomov z uporabo optimizacije : delo diplomskega seminarja
ID Cör, Manca (Author), ID Plestenjak, Bor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (618,45 KB)
MD5: 1E26151F94F552490182A466B07A7515

Abstract
V tem diplomskem seminarju obravnavamo naslednje metode za iskanje ničel polinomov: Newtonovo metodo, metodo Ostrovskega in Laguerrovo metodo. Izpeljali jih bomo s pomočjo vezanega optimizacijskega problema, potem pa na podoben način izpeljali še dve naprednejši metodi: izboljšano Newtonovo metodo in diskretno Laguerrovo metodo. Dokazali bomo nekaj izrekov, ki nam povedo, za koliko lahko povečan korak posamezne metode preseže najmanjšo ničlo. Metode bomo še numerično testirali in jih med seboj primerjali na problemu iskanja najmanjše lastne vrednosti simetrične tridiagonalne matrike. Primerjali bomo število potrebnih korakov za dovolj dober približek, njihovo časovno zahtevnost in red konvergence.

Language:Slovenian
Keywords:Newtonova metoda, metoda Ostrovskega, Laguerrova metoda, izboljšana Newtonova metoda, diskretna Laguerrova metoda
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-109395 This link opens in a new window
UDC:519.6
COBISS.SI-ID:18711641 This link opens in a new window
Publication date in RUL:01.09.2019
Views:1239
Downloads:194
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Derivation of polynomial zerofinders via optimization problems
Abstract:
In this diploma seminar we study the following polynomial zerofinders: Newton's method, Ostrowski's method and Laguerre's method. We will derive them via a constrained optimization problem and will also derive some new methods using the same approach: the improved Newton's method and the discrete Laguerre's method. We will prove some theorems that give us a bound on how far a magnified step for a given method can overshoot the smallest zero of a polynomial. We will test the methods numerically and compare them to one another. We will do that for the problem of finding the smallest eigenvalue of a symmetric tridiagonal matrix. We will compare the number of steps we need for a good approximation of the smallest eigenvalue, the time complexity of the methods and rate of convergence.

Keywords:Newton's method, Ostrowski's method, Laguerre's method, improved Newton's method, discrete Laguerre's method

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back