izpis_h1_title_alt

Posledici Carnotovega izreka : delo diplomskega seminarja
ID Šadl Praprotnik, Ada (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,84 MB)
MD5: 4338FB38C29DC663485242D78015B032
.jpgJPG - Appendix, Download (291,27 KB)
MD5: 76D5C06995991B639AFD84D8355BDFEE
.jpgJPG - Appendix, Download (166,88 KB)
MD5: A86F57C5FF46A644D33597EF6F03A68A
This document has even more files. Complete list of files is available below.

Abstract
Carnotov izrek nam pove, kdaj šest točk, po dve na vsaki stranici poljubnega trikotnika, leži na isti stožnici. Predstavili in dokazali bomo Carnotov izrek v evklidski in projektivni ravnini ter dve njegovi posledici. Prva posledica je definirana v evklidski ravnini in nam predstavi, kako s pomočjo danega trikotnika in izbrane točke konstruiramo šest točk na nosilkah stranic trikotnika, ki ležijo na isti stožnici. To stožnico imenujemo Cevova stožnica. Druga posledica je definirana v projektivni ravnini in nam pove, da točke na stranicah poljubnega trikotnika - ki jih dobimo tako, da iz vsakega oglišča tega trikotnika narišemo dve tangenti na dano stožnico, nato pa tangenti sekamo z nasprotno stranico - ležijo na isti stožnici.

Language:Slovenian
Keywords:Carnotov izrek, Pascalov izrek, projektivna ravnina, Cevova stožnica, Gergonnova točka
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-108764 This link opens in a new window
UDC:514
COBISS.SI-ID:18690137 This link opens in a new window
Publication date in RUL:20.07.2019
Views:1681
Downloads:2267
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Two applications of the theorem of Carnot
Abstract:
The theorem of Carnot gives us a necessary and sufficient condition for six points, two on each side of a given triangle, to be on a conic. We will explain the theorem in both Evclidean and projective plane and then explain two of its applications. The first one is called the construction of the Cevian conic. It tells us how to construct six points on the sides or the carriers of the sides of a triangle so that they will form a conic, a Cevian conic. The second application is defined in the projective plane and tells us that the tangent lines from the vertices of a given triangle to an arbitrary conic intersect the carriers of the opposite sides of the triangle in six points that are on a conic.

Keywords:Carnot theorem, Pascal theorem, projective plane, Cevian conic, Gergonne point

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Files

Loading...

Back