izpis_h1_title_alt

Gaussove mere na Hilbertovih prostorih : delo diplomskega seminarja
ID Rems, Jan (Author), ID Dragičević, Oliver (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (615,81 KB)
MD5: 68EB9CA52FB7E7501BE2571D7869DA55

Abstract
Na Hilbertovemu prostoru definiramo verjetnostno mero s pričakovano vrednostjo in kovariančnim operatorjem. Nato definiramo Gaussovo verjetnostno mero na prostoru realnih števil in jo za tem preko Fourierove transformiranke mere razširimo na Hilbertov prostor. S pomočjo produktne mere izračunamo nekaj Gaussovih integralov. Lastnosti Gaussovih mer prenesemo na Gaussove slučajne spremenljivke z vrednostmi v Hilbertovem prostoru in navedemo nekaj konkretnih primerov takšnih spremenljivk. Proučimo pogoje za neodvisnost le-teh in jih umestimo v prostor ekvivalenčnih razredov slučajnih spremenljivk. Nazadnje definiramo funkcijo belega šuma, ki elementu Hilbertovega prostora priredi slučajno spremenljivko, prav tako definirano na tem Hilbertovem prostoru. S pomočjo funkcije belega šuma in drugih pridobljenih rezultatov podamo konstrukcijo Brownovega gibanja.

Language:Slovenian
Keywords:Hilbertov prostor, Gaussova mera, linearni operator, Gaussova slučajna spremenljivka, Fourierova transformiranka mere, funkcija belega šuma, Brownovo gibanje
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-108588 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18686297 This link opens in a new window
Publication date in RUL:08.07.2019
Views:1686
Downloads:363
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Gaussian measures in Hilbert spaces
Abstract:
On a Hilbert space we define a probabilistic measure with expected value and covariance operator. Then Gaussian measure is defined on real line and later extended to Hilbert space by use of Fourier transform of measure. Notion of product measure helps us compute some integrals with respect to Gaussian measure. Properties of Gaussian measures are passed to Gaussian random variables with values in Hilbert space and some examples of these variables are presented. We investigate conditions for their indendence and put them in perspective of spaces of equivalence classes. At last we define a white noise function, which takes an element of Hilbert space and returns a random variable defined on a same Hilbert space. We use this result to construct a Brownian motion.

Keywords:Hilbert space, Gaussian measure, linear operator, Gaussian random variable, Fourier transform of measure, white noise function, Brownian motion

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back