izpis_h1_title_alt

Polinomske invariante vozlov
ID Šega, Urša (Author), ID Gabrovšek, Boštjan (Mentor) More about this mentor... This link opens in a new window, ID Cencelj, Matija (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/5837/ This link opens in a new window

Abstract
V magistrskem delu, ki sodi na področje teorije vozlov, se bomo ukvarjali s problemom določanja ekvivalentnosti vozlov, natančneje s polinomskimi invariantami vozlov, ki vozlu priredijo neki vozelni polinom. S pomočjo različnih premenjalnih relacij in zvitosti bomo definirali naslednje polinomske invariante, ki nam pomagajo odgovoriti na vprašanje o ekvivalentnosti vozlov: Alexandrov polinom, Alexander-Conwayjev polinom, Jonesov polinom, Kauffmanov polinom F, Kauffmanov oklepaj, Kauffmanov polinom X in HOMFLY-PT polinom. Za vsako izmed definiranih polinomskih invariant bomo naredili ekspliciten izračun njene vrednosti za Hopfov splet in vozel deteljico. Nekatere izmed teh invariant v literaturi veljajo za močnejše invariante (HOMFLY-PT polinom, Kauffmanov polinom F) in prepoznajo več vozlov, druge pa veljajo za nekoliko šibkejše. V magistrskem delu bomo te domneve dokazali in poiskali relacije med definiranimi polinomskimi invariantami vozlov.

Language:Slovenian
Keywords:polinomska invarianta vozla
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2019
PID:20.500.12556/RUL-108536 This link opens in a new window
COBISS.SI-ID:12505417 This link opens in a new window
Publication date in RUL:17.07.2019
Views:1231
Downloads:238
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Polynomial invariants of knots
Abstract:
In this MSc thesis, which deals with certain topics from knot theory, we will engage with the problem of determining knot equivalences. More accurately, with polynomial invariants of knots, which map knots to certain polynomials. With the aid of various skein relations and the writhe, we will define the following polynomial invariants, which will help us determine which knots are equivalent: Alexander polynomial, Alexander-Conway polynomial, Jones polynomial, Kauffman polynomial F, bracket polynomial, Kauffman polynomial X and HOMFLY-PT polynomial. For every defined polynomial invariant, we will explicity compute its value for the Hopf link and the trefoil knot. Some of these invariants dominate other invariants (HOMFLY-PT and Kauffman polynomial F), which means that they can distinguish between more knots than other invariants. In this MSc thesis we will prove this preposition and find a complete set of relations between the defined polynomial invariants of knots.

Keywords:polynomial invariant of knots

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back