The drug discovery industry is facing a challenge since more than 75 % of the human proteome is not easily modulated by small molecules and is therefore considered undruggable. Some alternative therapeutic approaches led to success, i.e. stabilized peptides, monoclonal antibodies, nucleic acid-based therapeutics, and gene therapy; however, these cannot be applied effectively to all biological targets and diseases. Recently, a novel approach using chimeric molecules that utilize the ubiquitin-proteasome system to induce proteolytic degradation of targeted proteins was discovered. These bifunctional compounds are termed proteolysis-targeting chimeras or PROTACs and are comprised of three elements: a ligand for the E3 ligase, a ligand binding to the protein of interest, and a linker connecting the two. The mechanism of action allows PROTACs to induce the degradation of the targeted protein in low concentrations and with high selectivity. This event-driven pharmacology model represents a better alternative to the occupancy-driven pharmacology model particularly in cancerous diseases, where resistance to classical inhibitors of prooncogenic proteins or their compensatory overexpression often develop. Bcl-2 is an example of a pharmacologically relevant anti-apoptotic protein that commonly becomes chemoresistant and is present in follicular lymphomas, diffuse B-cell lymphomas, multiple myeloma and in chronic lymphocytic leukemia.
Building on the established Bcl-2 inhibitor venetoclax, we have synthesized six PROTAC molecules that bind to cereblon as the targeted E3 ligase, one that binds to VHL and another that binds to IAP as the E3 ligase. We determined the binding affinity of PROTACs for Bcl-2 and their ability to induce Bcl-2 degradation. The molecules expressed adequate affinity for Bcl-2 but failed to cause its proteolysis. We additionally tested the Bcl-2 – cereblon PROTACs on three different cell lines and found that some significantly reduced cell viability. The results indicate that the synthesized compounds are capable of inhibiting but not also degrading Bcl-2. However, further research is needed to fully explain their mechanism of action.
|