Details

Razvoj krmiljenja mobilnega robota z metodo vzpodbujevalnega učenja
ID Planinšek, Nejc (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (16,06 MB)
MD5: 329A66A408954833831B189B810A2267

Abstract
Strojno učenje se vse pogosteje pojavlja kot rešitev problemov, ki jih je težko rešiti s klasičnimi pristopi. Pri strojnem učenju algoritem naučimo na osnovi podatkov, namesto da bi ga eksplicitno napisali. V tej nalogi smo z metodami strojnega učenja razvili krmilnik mobilnega robota za sledenje črti. Razvili smo zaznavalo črte, ki deluje odlično v različnih pogojih. Ustvarili smo simulacijsko okolje za preizkušanje krmiljenja robota in v njem z metodami vzpodbujevalnega učenja razvili krmilnik, ki sledi črti. Krmilnik smo iz simulacije prenesli v realni svet. V simulaciji krmilnik deluje primerljivo s klasičnim PID krmilnikom, v realnem svetu pa precej slabše, kar bi lahko izboljšali v nadaljnjem delu. Zaznavalo črte in krmilnik sta sposobna realnočasovnega delovanja na omejenih platformah, kot je Raspberry Pi.

Language:Slovenian
Keywords:strojno učenje, vzpodbujevalno učenje, umetne nevronske mreže, simulacijsko okolje, sledenje črti, mobilni roboti
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[N. Planinšek]
Year:2019
Number of pages:XXI, 58 str.
PID:20.500.12556/RUL-107876 This link opens in a new window
UDC:007.52:004.83(043.2)
COBISS.SI-ID:16656155 This link opens in a new window
Publication date in RUL:01.06.2019
Views:2550
Downloads:330
Metadata:XML DC-XML DC-RDF
:
PLANINŠEK, Nejc, 2019, Razvoj krmiljenja mobilnega robota z metodo vzpodbujevalnega učenja [online]. Master’s thesis. Ljubljana : N. Planinšek. [Accessed 31 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=107876
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Design of mobile robot control using reinforcement learning methods
Abstract:
Machine learning is increasingly emerging as a solution to problems that are difficult to solve with classical approaches. In machine learning, the algorithm is trained on data, rather than written explicitly. In this thesis, we developed a mobile robot controller using methods of machine learning. We developed a line detector, that works well under different conditions. We created a simulation environment, designed for testing robot control algorithms, and developed a line following controller using reinforcement learning methods. The controller was transferred from simulation to the real world. In the simulation, controller performance is comparable to the classic PID controller, whereas in the real world, it is considerably worse. That could be improved in future work. The detector and controller are capable of real-time operation on limited platforms such as Raspberry Pi.

Keywords:machine learning, reinforcement learning, artificial neural networks, simulation enviornment, line following, mobile robots

Similar documents

Similar works from RUL:
  1. Incel radicalization risk assessment using natural language processing of online forum posts
  2. Automated trading system using machine learning, stream mining and technical analysis of trading
  3. Predictive models for compound binding to androgen and estrogen receptors based on counter-propagation artificial neural networks
  4. Optimisation of design parameters of a competitive mobile robot
  5. Nonlinear modeling of the relationship between xylem tree-rings and environment
Similar works from other Slovenian collections:
  1. Mechanical trading system based on reinforcement learning
  2. Adversarial reinforcement learning in playing video games for two players
  3. Modelling dynamic systems with artificial neural networks and related methods
  4. Nature-inspired algorithms for hyperparameter optimization
  5. Implementation of NEAT genetic algorithm for navigation in 2D space

Back