Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Uporaba genetskih algoritmov v grafičnih programih za izboljšavo avtonomnega obnašanja
ID
Červ, Klemen
(
Author
),
ID
Gabrijelčič Tomc, Helena
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1003,60 KB)
MD5: 1D614E6885EC43DF31939FA4EF8E0B88
Image galllery
Abstract
Pri izdelavi animacij, ki se uporabljajo predvsem pri izdelavi animiranih filmov, pogosto prihaja do problemov, ko je scena predstavljena s skupino premikajočih se objektov. Animiranje vsakega objekta oz. člana skupine je namreč časovno potratno, zato se v praksi uporabljajo simulacije, ki izračunajo gibanje skupine. Pri animiranju skupin, kjer se člani zavedajo sosedov v skupini in okolice, se za simulacijo lahko uporabi model kolektivnega gibanja. Simulacije prihranijo veliko časa pri delu, a z njihovo uporabo ni natančnega nadzora nad gibanjem posameznih članov. Simulacijo, ki uporablja model kolektivnega gibanja, lahko parametriziramo do te mere, da se animacija skupine izvede po naših željah. V tej nalogi so uporabljeni genetski algoritmi za izbiro optimalnih parametrov modela kolektivnega gibanja. Če poteka gibanje skupine brez trkov med člani ali z okolico, je videti takšno vedenje članov skupine bolj avtentično. Genetski algoritmi so bili uporabljeni tudi zato, da se je zmanjšal čas računanja simulacije. Implementiran je bil program za izvajanje takšnih simulacij, preverjen pa je bil na enostavnem scenariju, kjer se je skupina pojavila na določenem začetnem območju in se je morala mimo ovir premakniti do cilja. Z izdelanim programom so se izvajale simulacije z različnimi nastavitvami, za katere so se beležili trki in meril čas računanja posamezne sličice. Iz rezultatov je razvidno, da se lahko s tem programom izberejo optimalne nastavitve simulacije kolektivnega gibanja za uporabljen scenarij. S programom se lahko prepreči trke v simulacijah skupin z velikostjo do 340 članov. Zaradi uporabe genetskih algoritmov se je zmanjšal tudi čas računanja posamezne sličice simulacije.
Language:
Slovenian
Keywords:
kolektivno gibanje
,
genetski algoritmi
,
simulacija
,
optimizacija
,
animacija
Work type:
Master's thesis/paper
Organization:
NTF - Faculty of Natural Sciences and Engineering
Year:
2019
PID:
20.500.12556/RUL-107509
Publication date in RUL:
21.04.2019
Views:
1156
Downloads:
205
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Use of genetic algorithms in graphic programs to optimise autonomus behavior
Abstract:
In the production of animated films, problems frequently arise in scenes with groups of moving objects. Animating each object or member of the group individually can be very time consuming, which is why simulations that calculate all the movements are normally used in practice. If group members need to be aware of other members and their surroundings, the most appropriate model for simulating the movement is a model of flocking behaviour. Such simulations save a lot of time at the expense of precise control over individual group members. To achieve the desired movement of the group, flocking simulation settings are iteratively changed until a satisfactory result is achieved. This thesis tests and evaluates the use of genetic algorithms for selecting the optimal parameters of simulated flocking. The aim was to simulate group movement without collisions between group members or with the surroundings to get an authentic animation of group members' behaviour. A programme for flocking simulations was implemented and tested on a short scenario. A group of objects scattered across a designated starting area had to pass an obstacle course to reach a final destination. The programme was run at different settings, and collisions and frame calculation times were recorded. The results show that the programme was able to set optimal parameters for flocking simulations in the scenario. Measurements show that groups of up to 340 members can be simulated without collisions using the programme. Additionally, the use of a genetic algorithm reduced the time needed to calculate the simulation.
Keywords:
flocking
,
collective behaviour
,
genetic algorithms
,
simulation
,
optimization
,
animation
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back