Paradontosis is an inflammatory disease, which affects gums. It leads to loss of teeth. The process of inflammation is followed by unbalanced level of microbiota in periodontal pockets, which are very hard to reach with conventional drug delivery systems. Modern delivery systems have been developing for the purposes of local treatment of periodontal disease in the recent years. We introduce perspective delivery system, based on nanofibers with incorporated probiotics. The advantages of nanofibers are high specific surface area, bioadhesion and biocompatibility. It has been a promising method for recolonisation of periodontal pockets with probiotics.
The aim of this master thesis was the developement of policaprolactone nanofibers with incorporated probiotics. We selected and produced a strain Bacillus sp. 25.2.M, which was able to sporulate. We used spores, which are more resistant to aggressive chemical agents than vegetative bacteria. We produced nanofibers with electrospinning process and used the most perspective solvents mixture according to viability, solubility and ability of electrospinning process.
Diameters and morphology of nanofibers were analysed with optical microscopy and scanning electron microscopy. An optimization of the nanofibers was carried out to improve the electrospinning process. We were changing polymer concentration, mixture of solvents, conductivity of polymer solution and electrospinning parameters. Polyethylene glycol or polyethylene oxide were added to increase porosity of fibers. Finally we produced (nano)fibers based on the two most promising policaprolactone solution with incorporated probiotics. We evaluated the viability of probiotic spores in different stages of preparing (nano)fibers with incorporated probiotics. Based on the viability 3,88 log CFU/mgpolymer, we confirmed that electrospinning method was successful for production of (nano)fibers with probiotics. We can conclude that some additional optimization experiments should be done to improve the processibility of electrospinning process. Based on SEM photos and release profile we can conclude that spores in PCL nanofibers did not get in touch with medium, therefore spores did not change to vegetative bacteria. Incorporation of PEO into fibers structure increased porosity and enabled spores to release from fibers.
|