izpis_h1_title_alt

Igranje mlina z drevesnim preiskovanjem Monte Carlo
ID ŠEMRL, MIHA (Author), ID Šter, Branko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (693,21 KB)
MD5: BC079DA1D22FDD0131B68E68C876AB0B

Abstract
Pri odločanju veliko vlogo igra naše dosedanje znanje in predvsem razmišljanje o možnostih, ki se nam bodo pojavile v prihodnosti. Za ljudi je dolgoročno planiranje v kompleksnih domenah težavno, saj je med drugim precej zahtevno že za ohranjanje v spominu. Pri odločitvenih problemih, med katere spadajo tudi igre, želimo izvajati take akcije, ki nam bi naj prinesle čimvečjo možnost uspeha. Ena od takšnih metod je drevesno preiskovanje Monte Carlo. Ker je ta način razmišljanja v večini primerov za človeka pretežak, prihaja do vse večje uporabe v računalniškem svetu, saj se dobro izkaže pri igrah z velikim vejitvenim faktorjem. V diplomski nalogi je metoda implementirana in prikazana njena uporaba v igri mlin, kjer je število potekov igre zelo veliko in je zato raziskovanje v prihodnost še bolj težko.

Language:Slovenian
Keywords:umetna inteligenca, drevesno preiskovanje Monte Carlo, igre, mlin
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2019
PID:20.500.12556/RUL-107094 This link opens in a new window
Publication date in RUL:27.03.2019
Views:1246
Downloads:193
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Nine men's morris using Monte Carlo tree search
Abstract:
In decision making our current knowledge plays a big part, especially when thinking of possibilities that could happen in the future. For humans, long-term planning is hard, since it is, among other reasons, hard to remember. In decision-making problems, which include also games, we want to perform such actions that most probably lead to success. One of such methods is Monte Carlo tree search. Because it is too hard for humans to use it on their own, we try to implement it using computers, since it is a method that works well on games with large branching factors. In this thesis we implement the method and show how to use it in a game called Nine men's morris, which is moderately complex and so it is hard to predict it into the future.

Keywords:artifical inteligence, Monte Carlo tree search, games, Nine men's morris

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back