izpis_h1_title_alt

Primerjava latentnih modelov za priporočilne sisteme v strojnem učenju
ID BUCIK, DEMIAN (Avtor), ID Bosnić, Zoran (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,03 MB)
MD5: 0AF04C50CDFAB247CA2002B3A7FED081

Izvleček
Vseprisotnost priporočilnih sistemov v digitalnem ekosistemu korenito spreminja način uporabe spletnih storitev. V poplavi informacij se uporabniki za dostop do zanimivih in koristnih vsebin zanašajo na njihova priporočila. Cilj te diplomske naloge je predstaviti dve vrsti priporočilnih sistemov, ki temeljijo na skupinskem filtriranju. Pri konstrukciji modelov se opremo na določene koncepte strojnega učenja. Modele implementiramo v okolju Python in evalviramo pri napovedovanju števila poslušanj izvajalcev in uporabnikovih ocen vsebine, za kar uporabimo dve podatkovni množici. Ob tem predlagamo način razširitve omejenega Boltzmannovega stroja za priporočanje in modeliranje zveznih ocen ter uporabimo dodatek modelu na osnovi matričnega razcepa, ki omogoča modeliranje prijateljstev med uporabniki. Rezultati nakazujejo, da modeli na osnovi matričnega razcepa delujejo občutno bolje in da se splača več časa investirati v njihov nadaljnji razvoj.

Jezik:Slovenski jezik
Ključne besede:skupinsko filtriranje, strojno učenje, matrična faktorizacija, omejen Boltzmannov stroj, metoda največje aposteriorne verjetnosti
Vrsta gradiva:Diplomsko delo/naloga
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2019
PID:20.500.12556/RUL-106833 Povezava se odpre v novem oknu
Datum objave v RUL:18.03.2019
Število ogledov:1047
Število prenosov:292
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Comparison of latent models for recommender systems in machine learning
Izvleček:
The ubiquity of recommender systems in the digital ecosystem is thoroughly changing the way web services are used. In the ceaseless stream of information, users are relying on their recommendations to access interesting and useful content. The aim of this thesis is to present two approaches to collaborative filtering based recommender systems. Developing the models, we borrow certain concepts from the field of machine learning. All models are implemented in Python and evaluated on two datasets, one containing the numbers of plays and the other containing users' ratings of content. We propose a way to model continuous ratings with restricted Boltzmann machine and apply an addition to the matrix factorization model that makes it possible to model friendships between users. The results suggest that matrix factorization models work considerably better and that more time should be invested in their further development.

Ključne besede:collaborative filtering, machine learning, matrix factorization, restricted Boltzmann machine, maximum a posteriori estimation

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj