izpis_h1_title_alt

Königova lema in Kleenejevo drevo : delo diplomskega seminarja
ID Slivnik, Tadej (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (412,82 KB)
MD5: F89A2F9C155EA10D181DE0E396E9BBBD

Abstract
V delu predstavimo neskončna dvojiška drevesa in neskončne poti v drevesih. Definiramo Cantorjev prostor kot produkt števno neskončno kopij diskretnega prostora 2 = {0, 1}. Na kratko predstavimo Turingove stroje in izračunljivo analizo, v kateri vsako računanje opravimo z mehansko napravo (v našem primeru s pomočjo Turingovih strojev). Spoznamo, da je šibka Königova lema na dvojiških drevesih, v navadni matematiki kot tudi v izračunljivi, zelo močno orodje. Konstruiramo takšno izračunljivo neskončno dvojiško drevo, ki nima izračunljive neskončne poti, to je Kleenejevo drevo. S pomočjo Kleenejevega drevesa dokažemo še, da izračunljiv Cantorjev prostor in izračunljiv interval nista izračunljivo kompaktna.

Language:Slovenian
Keywords:dvojiško drevo, Cantorjev prostor, Königova lema, teorija izračunljivosti, Kleenejevo drevo
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2019
PID:20.500.12556/RUL-106821 This link opens in a new window
UDC:510.6
COBISS.SI-ID:18602585 This link opens in a new window
Publication date in RUL:18.03.2019
Views:1070
Downloads:178
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:König's lemma and Kleene tree
Abstract:
In this work, we present infinite binary trees and infinite paths in them. We define the Cantor space as a product of countably many copies of the discrete space 2 = {0, 1}. We briefly introduce Turing machines and computability, where each calculation is done with a mechanical device (in our case, with the help of Turing machines). We notice that the weak König's lemma on binary trees is a very powerful tool in ordinary mathematics as well as in computability theory. We construct an infinite computable tree that does not have an infinite computable path, that is Kleene tree. Using Kleene tree, we also prove that the computable Cantor space and the computable interval are not compact in a computable way.

Keywords:binary tree, Cantor space, König's lemma, computability theory, Kleene tree

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back