izpis_h1_title_alt

BIOSINTEZA AKTINOPLANSKE KISLINE V STREPTOMYCES RAPAMYCINICUS
ID Mrak, Peter (Author), ID Žgur Bertok, Darja (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (17,72 MB)
MD5: 1811EA60FF2A0A0220F707478407B64D

Abstract
Aktinobakterije ponujajo neverjetno bogastvo biosinteznih poti za bioaktivne spojine. Genetika, biokemija in biološka aktivnost sekundarnih metabolitov so bile največkrat preučevane individualno, na ravni ene spojine. Napredek pri določanju zaporedja genomov ter rudarjenju za sekundarnimi metaboliti je omogočil, da danes rutinsko najdemo >50 genskih gruč za sekundarne metabolite v vsakem genomu, vendar pa slabo razumemo strateški pomen in delovanje tega velikega arzenala. Po odkritju signaliziranja preko kompleksov TOR, se je rapamicin izkazal kot nepogrešljivo orodje, tako pri raziskavah celične biologije kot v kliničnih aplikacijah. Med raziskavami sekundarnega metaboloma producenta rapamicina, Streptomyces rapamycinicus, smo opazili akumuliranje dveh spojin, ki sta nesorodni do sedaj opisanim sekundarnim metabolitom iz tega organizma. Določitev strukture je razkrila, da gre za aktinoplansko kislino A in njen dezmetilni analog. Aktinoplanske kisline so bile izolirane sredi 90. let in okarakterizirane kot močni in selektivni inhibitorji Ras protein-farnezil transferaz, vendar pa so ostale neraziskane v smislu njihovega biosinteznega izvora. Kemijska zgradba teh poliketidov vsebuje izjemno redko trikarbalilno skupino, ki jo danes lahko najdemo samo še na enem sekundarnem metabolitu, glivnem toksinu fumonizinu. Pri tem so aktinoplanske kisline edinstvene še v tem, da pri njih trikarbalilna skupina tvori dvojni lakton z delom poliketidne verige. Z rudarjenjem genoma in s pomočjo unikatne strukture teh spojin smo odkrili gensko gručo, ogovorno za biosintezo aktinoplanskih kislin. S pomočjo molekularnih orodij CRISPR, ki smo jih razvili za ta organizem, in bioinformatskih napovedi, smo določili biosintezno pot aktinoplanskih kislin. To je prvi bakterijski primer vgradnje redke trikarbalilne skupine v sekundarni metabolit. Naši rezultati kažejo, da se poliketidno jedro teh spojin acilira preko netipičnega formiranja estra s pomočjo peptidne sintetaze s sočasno redukcijo akonitilnega začetnega bloka. Vpleteni encimi so filogenetsko oddaljeni od drugih primerov peptidnih sintetaz, ki tvorijo estre, vključno s tistimi, ki sodelujejo v biosintezi fumonizinov. Zanimivo je, da sta se kljub redki kemiji in podobnim biosinteznim principom obe poti verjetno razvili neodvisno. Preko raziskovanja biosintezne poti za aktinoplanske kisline smo opazili, da se genski gruči za rapamicin ter aktinoplanske kisline brez izjeme so-nahajata na genomih treh znanih producentov rapamicina. To je vodilo v odkritje sinergistične protiglivne aktivnosti teh dveh sekundarnih metabolitov. Sinergija in komplementirajoče delovanje v svetu sekundarnih metabolitov sta poznana že več desetletij, vendar so ti pojavi ostali v veliki meri neizkoriščeni. Rudarjenje genomov za evolucijsko ohranjeno so-nahajanje genskih gruč bi zelo verjetno pripeljalo do novih nizov sekundarnih metabolitov, ki delujejo na več tarč pri »sovražniku«. Taki primeri lahko služijo kot načrt za razvoj novih kombinacijskih terapij v medicini.

Language:Slovenian
Keywords:aktinoplanska kislina, rapamicin, sinergija, biosinteza, aktinobakterije, sekundarni metabolizem, naravni produkt, poliketidna sintaza, peptidna sintetaza, trikarbalilna skupina
Work type:Doctoral dissertation
Organization:MF - Faculty of Medicine
Year:2019
PID:20.500.12556/RUL-106814 This link opens in a new window
COBISS.SI-ID:299658496 This link opens in a new window
Publication date in RUL:18.03.2019
Views:1977
Downloads:245
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:THE BIOSYNTHESIS OF ACTINOPLANIC ACID IN STREPTOMYCES RAPAMYCINICUS
Abstract:
Actinobacteria possess an incredible wealth of pathways for production of bioactive compounds. Genetics, biochemistry and biological activity of natural products have most often been studied on a single compound level. Following advances in genome mining, over 50 natural product gene clusters are routinely found in each genome, however the modus operandi of this large arsenal is poorly understood. After the discovery of TOR signaling, rapamycin has proven an invaluable asset for cell biology research, as well as clinical application. During investigations of the secondary metabolome of its producer, Streptomyces rapamycinicus, we have observed accumulation of two compounds never before reported from this organism. Structural elucidation revealed actinoplanic acid A and its novel desmethyl analogue. Actinoplanic acids have been left unexplored in their biosynthetic origin after the initial isolation and characterization of their potent and selective Ras farnesyl-protein transferase inhibitor (FTI) activity in early 1990s. The structure of these polyketides contains an extremely rare tricarballylic moiety, presently found only on one other natural product, the fungal toxins fumonisins. In addition, the actinoplanic acid is unique in having one of the tricarballylic groups closing a part of the polyketide backbone into a double-ester lactone. Supported with the unique structure of these polyketides, we have identified a gene cluster responsible for their biosynthesis through genome mining. Using CRISPR genome editing tools, which we developed for this organism, and the power of bioinformatic functional prediction, we have outlined the actinoplanic acid biosynthetic pathway, the first bacterial example of a pathway incorporating the rare tricarballylic moiety into a natural product. We show that the core polyketide is acylated with tricarballylate by a rare, atypical NRPS-catalyzed ester formation. The proteins involved are phylogenetically distant to other examples of ester-forming NRPS, including those involved in the fumonisin pathway. Strikingly, despite the extremely rare chemistry and similar biosynthetic principles, the two pathways seem to have evolved independently. Finally, through exploration of the actinoplanic acid pathway, we have observed that actinoplanic acid and rapamycin clusters are without exception co-localized in the genomes of their hosts. This led to discovery of synergistic antifungal activity of actinoplanic acid A and rapamycin. Synergism and contingency in the big arsenal of secondary metabolites have been foreseen for decades, however their teachings are vastly underexploited. Mining for such evolutionary conserved co-harboring of pathways would likely reveal further examples of secondary metabolite sets, attacking multiple targets on the same foe. These can then serve as a guidance for development of new combination therapies.

Keywords:actinoplanic acid, rapamycin, synergy, biosynthesis, actinobacteria, secondary metabolism, natural product, polyketide synthase, nonribosomal peptide synthetase, tricarballylic moiety

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back