Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
A comparison of models for forecasting the residential natural gas demand of an urban area
ID
Hribar, Rok
(
Avtor
),
ID
Potočnik, Primož
(
Avtor
),
ID
Šilc, Jurij
(
Avtor
),
ID
Papa, Gregor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(880,51 KB)
MD5: D646CD746C7C6E432CA7AB48725FCB82
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0360544218321728?via%3Dihub
Galerija slik
Izvleček
Forecasting the residential natural gas demand for large groups of buildings is extremely important for efficient logistics in the energy sector. In this paper different forecast models for residential natural gas demand of an urban area were implemented and compared. The models forecast gas demand with hourly resolution up to 60 h into the future. The model forecasts are based on past temperatures, forecasted temperatures and time variables, which include markers for holidays and other occasional events. The models were trained and tested on gas-consumption data gathered in the city of Ljubljana, Slovenia. Machine-learning models were considered, such as linear regression, kernel machine and artificial neural network. Additionally, empirical models were developed based on data analysis. Two most accurate models were found to be recurrent neural network and linear regression model. In realistic setting such trained models can be used in conjunction with a weather-forecasting service to generate forecasts for future gas demand.
Jezik:
Angleški jezik
Ključne besede:
demand forecasting
,
buildings
,
energy modeling
,
forecast accuracy
,
machine learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2019
Št. strani:
Str. 511-522
Številčenje:
Vol. 167
PID:
20.500.12556/RUL-106552
UDK:
004.9:620.9(045)
ISSN pri članku:
0360-5442
DOI:
10.1016/j.energy.2018.10.175
COBISS.SI-ID:
31841575
Datum objave v RUL:
05.03.2019
Število ogledov:
1268
Število prenosov:
702
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Energy
Skrajšan naslov:
Energy
Založnik:
Pergamon Press
ISSN:
0360-5442
COBISS.SI-ID:
25394688
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
napovedovanje odjema
,
zgradbe
,
energetsko modeliranje
,
natančnost napovedi
,
strojno učenje
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0098, P2-0241, PR-07606
Naslov:
Računalniške strukture in sistemi, Sinergetika kompleksnih sistemov in procesov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj