Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Analiza obratovalnih parametrov ležaja sesalne enote z metodami strojnega učenja
ID
Benedik, Blaž
(
Author
),
ID
Duhovnik, Jožef
(
Mentor
)
More about this mentor...
,
ID
Tavčar, Jože
(
Comentor
)
PDF - Presentation file,
Download
(6,20 MB)
MD5: FC18CC16EC084761AF85B2BE16C2DCD9
PDF - Appendix,
Download
(107,46 KB)
MD5: A81A0CDA7427AD6FBB2AC22C3031A863
PDF - Appendix,
Download
(38,08 MB)
MD5: C0C421F2E09DB414C902BA5C3789EEDB
This document has even more files. Complete list of files is available
below
.
Image galllery
Abstract
Jedro doktorske naloge je empirično modeliranje dobe trajanja ležaja sesalne enote. Glavne vplive na dobo trajanja smo razložili s statistično prepoznanimi vplivi širšega nabora domnevnih vplivov. Postavljeni napovedni model ocenjuje dobo trajanja ležaja za 50 odstotno verjetnost odpovedi L_50. Le-to določajo temperatura ležaja, hitrostni faktor, ekvivalentna obremenitev, količina masti, vrsta oljne osnove, vrsta ležajne kletke, vrsta tesnila, tolerančni razred in položaj ležaja v sesalni enoti. Nabor empiričnih podatkov je sprva predstavljalo 4672 populacij z 38.000 sesalnimi enotami. Stroge filtrirne zahteve so rezultirale v končnem seznamu 170-ih populacij za izgradnjo Weibullove podatkovne baze. Rezultat multiple linearne regresije je dobljen empirični model, ki skupaj z zgrajeno Weibullovo bazo predstavljajo doprinos k znanosti na področju napovedovanja dobe trajanja ležaja.
Language:
Slovenian
Keywords:
sesalna enota
,
odpovedi ležaja
,
razpad masti
,
Weibullova porazdelitev
,
cenzurirani podatki
,
filtriranje testov
,
doba trajanja ležaja
		linearna regresija
Work type:
Doctoral dissertation
Organization:
FS - Faculty of Mechanical Engineering
Year:
2018
PID:
20.500.12556/RUL-106150
Publication date in RUL:
01.02.2019
Views:
1180
Downloads:
646
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Bearing operational parameters analysis in vacuum cleaner motor using machine learning methods
Abstract:
The focus of the thesis is the empirical modelling of bearing life. An approach towards the prediction of life through range of different conditions was used. The model estimates bearing life for 50% probability of survival - L_50, which is determined with bearing temperature, speed factor, equivalent load, grease fill, type of oil, type of bearing cage, type of seals, tolerance class and side of the motor. The empirical data initially consisted of 4672 different test populations, involving 38.000 vacuum cleaner motors. Strict filtering requirements resulted in 170 final populations selected for building Weibull databank for learning final models. The obtained empirical models gained with multiple linear regression are together with obtained databank a contribution to the science in field of bearing life forecasting.
Keywords:
vacuum cleaner motor
,
bearing failure
,
grease deterioration
,
Weibull probability function
,
censored data
		Filtering of tests
		Bearing life
		Linear regression
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Files
Loading...
Back