Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Učenje odločitvenih pravil z evolucijsko optimizacijo
ID
PIČULIN, MATEJ
(
Author
),
ID
Robnik Šikonja, Marko
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(770,46 KB)
MD5: 8731D9608D5EF9E259242F0AFF93A8AA
Image galllery
Abstract
Učenje pravil je eno od uspešnih napovednih in opisnih metod strojnega učenja. Pravila dosegajo solidno klasifikacijsko točnost in so razložljiva, kar je pomembno za končne uporabnike, ki napovedim z razlago bolj zaupajo. Izziv pri iskanju odločitvenih pravil je dobiti kratke in razumljive sezname pravil z visoko klasifikacijsko točnostjo. To je vodilo do razvoja mnogih različnih oblik klasifikacijskih pravil, kot so trda pravila, mehka pravila, verjetnostna pravila itd. Razvili smo dve metodi za iskanje odločitvenih pravil z uporabo optimizacije s kolonijo mravelj, ki je uspešna metoda za diskretno optimizacijo. V prvem delu disertacije predstavimo novo metodo imenovano nAnt-Miner, ki, za razliko od večine drugih metod, osnovanih na koloniji mravelj, obravnava tudi številske atribute. To vodi do večjega preiskovalnega prostora in vpliva na čas izvajanja ter porabo pomnilnika. Pokazali smo, da je metoda nAnt-Miner primerljiva z ostalimi metodami na osnovi kolonije mravelj, vendar je slabša od metode FURIA za iskanje mehkih pravil. Prednost metode nAnt-Miner je v tem, da lahko zazna močne odvisnosti med atributi. V drugem delu disertacije predstavimo metodo ProAnt-Miner, ki išče verjetnostna pravila. Predstavimo novo interpretacijo feromonov za delovanje te metode. Metoda ProAnt-Miner je v primerjavi z metodo nAnt-Miner hitrejša, dosega višjo klasifikacijsko točnost in porabi manj pomnilnika, predvsem zaradi uporabe drugačnega preiskovalnega grafa. Pokazali smo, da se metoda ProAnt-Miner, glede na klasifikacijsko točnost, statistično ne razlikuje od vodilnih metod, kot sta FURIA in RIPPER. Metoda ProAnt-Miner ima novo obliko pravil, ki lahko da nov pogled na podatke. Metodi smo ovrednotili na realnih in umetnih podatkovnih množicah.
Language:
Slovenian
Keywords:
kolonija mravelj
,
evolucijsko računanje
,
strojno učenje
,
učenje pravil
,
verjetnosta pravila
,
mehka pravila
Work type:
Doctoral dissertation
Organization:
FRI - Faculty of Computer and Information Science
Year:
2018
PID:
20.500.12556/RUL-105183
Publication date in RUL:
07.11.2018
Views:
3089
Downloads:
353
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PIČULIN, MATEJ, 2018,
Učenje odločitvenih pravil z evolucijsko optimizacijo
[online]. Doctoral dissertation. [Accessed 12 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=105183
Copy citation
Share:
Secondary language
Language:
English
Abstract:
One of successful predictive and descriptive approaches in machine learning is decision rule learning. Decision rules achieve reasonable classification accuracy and are interpretable, which is important to end users, who trust predictions more if they are supported with explanations. The challenge in mining decision rules is to find a short and comprehensible rule list with high classification accuracy. This led to many different types of classification rules like crisp rules, soft rules, probabilistic rules, etc. We developed two new methods for mining classification rules based on ant colony optimization, which is a successful discrete optimization method. In the first part of the dissertation, we present a new method called nAnt-Miner, which can, contrary to most other ant colony based approaches, handle numeric attributes. This leads to an increased search space and affects the running time and use of memory. We showed that the nAnt-Miner method is comparable to other ant colony optimization based rule learning methods, but is worse than fuzzy rules based method FURIA. The advantage of the nAnt-Miner method is that it can detect strong dependencies between attributes. In the second part of the dissertation we present the ProAnt-Miner method, which mines probabilistic rules. We introduce a novel interpretation of pheromone values for this approach. ProAnt-Miner is faster, achieves better prediction accuracy than nAnt-Miner, and uses less memory due to a different search graph. We showed that the ProAnt-Miner classification accuracy does not statistically differ from the state-of-the-art methods like FURIA and RIPPER. The ProAnt-Miner method has new rule form, which can give the user new insights. We evaluated both methods on real and artificial datasets.
Keywords:
ant colony optimization
,
evolutionary computation
,
machine learning
,
rule learning
,
probabilistic rules
,
soft rules
Similar documents
Similar works from RUL:
Razvoj avtomatskega modalnega kladiva
Dynamic measurements using FDM 3D-printed embedded strain sensors
Eksperimentalni dinamski modeli podstruktur v metodah analize prenosnih poti
Hibridni postopek dinamičnega sklapljanja podstruktur v frekvenčnem prostoru
Karakterizacija vpliva bitumenske izolacije na vibracijski odziv plošče
Similar works from other Slovenian collections:
Ocenjevanje starosti osebe na osnovi digitalnih posnetkov z uporabo konvolucijskih nevronskih mrež
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
Storitev interaktivnega spremljanja avdiovizualnih vsebin v okolju IPTV
Back