Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Povečanje povezavne povezanosti grafa
ID
Geršak, Jan
(
Author
),
ID
Žitnik, Arjana
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(487,21 KB)
MD5: ABD6D145D1594E8F09171BB8A0DAB085
Image galllery
Abstract
V diplomski nalogi obravnavamo problem povečanja povezavne povezanosti grafa. V prvem delu diplomske naloge predstavimo kaktusno reprezentacijo grafa in opišemo njeno konstrukcijo, za katero predstavimo tudi algoritem. V drugem delu diplomske naloge predstavimo povezavo med povezanostjo grafa in povezanostjo njegove kaktusne reprezentacije. S pomočo te povezave določimo spodnjo mejo za število potrebnih povezav za povečanje povezavne povezanosti grafa za ena in dokažemo, da je vedno doseŽena. Nato podamo algoritem, ki s pomočjo normalne kaktusne reprezentacije cikličnega tipa poveča povezavno povezanost grafa za ena. V tretjem delu diplomske naloge predstavimo splošno metodo razcepljanja povezav in jo uporabimo v Frankovem algoritmu za povečanje povezavne povezanosti grafa na dano vrednost. Tu tudi dokažemo Maderjev izrek, ki nam omogoča uporabo metode razcepljanja povezav za izvajanje Frankovega algoritma.
Language:
Slovenian
Keywords:
graf
,
kaktusna reprezentacija
,
povečanje povezavne povezanosti
,
razcepljanje povezav
,
Frankov algoritem
,
Maderjev izrek.
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2018
PID:
20.500.12556/RUL-105180
Publication date in RUL:
07.11.2018
Views:
1380
Downloads:
297
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Edge-connectivity augmentation of a graph
Abstract:
In this thesis we consider the edge-connectivity augmentation problem. In the rst part of the thesis we present a cactus representation of a graph and describe its construction for which we present an algorithm. In the second part of the thesis we consider the relation between edge-connectivity of a graph and its cactus representation. Using this relation we give a lower bound for the least number of edges to be added to increase the edge-connectivity of a graph by one. We also prove that the lower bound is always achievable. Then we give an algorithm for edge-connectivity augmentation by one by applying properties of the cycle-type normal cactus representation. In the third part of the thesis we present general edge splitting method which is used in Frank's algorithm for solving edge-connectivity augmentation problem. We also prove Mader's theorem which is needed to prove niteness of edge splitting in Frank's algorithm.
Keywords:
graph
,
cactus representation
,
edge connectivity augmentation
,
edge splitting
,
Frank's algorithm
,
Mader's theorem.
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back