Details

Metodologija vrednotenja učinkov programa LEADER : magistrsko delo
ID Šabec Korbar, Eva (Author), ID Potočnik Slavič, Irma (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,68 MB)
MD5: 65F234C62E47E7386A43BBD50A34489A

Language:Slovenian
Keywords:magistrska dela, bolonjska magistrska dela, geografske diplome, agrarna geografija, podeželje, razvoj podeželja, regionalni razvoj, LEADER, Slovenija, Notranjska, Primorska
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[E. Šabec]
Year:2018
Number of pages:76 str.
PID:20.500.12556/RUL-104475 This link opens in a new window
UDC:711.3(497.4)
COBISS.SI-ID:67762018 This link opens in a new window
Publication date in RUL:08.10.2018
Views:1850
Downloads:471
Metadata:XML DC-XML DC-RDF
:
ŠABEC KORBAR, Eva, 2018, Metodologija vrednotenja učinkov programa LEADER : magistrsko delo [online]. Master’s thesis. Ljubljana : E. Šabec. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=104475
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:agricultural geogarphy, rural areas, rural development, Slovenia

Similar documents

Similar works from RUL:
  1. Neural machine translation of literary texts from English to Slovene
  2. Evaluation of a machine translation system for lectures
  3. Domain specific adaptation of a statistical machine translation engine in Slovene language
  4. Lexical diversity in statistical and neural machine translation
  5. Comprehending the neural language: How people understand the language of machine translation engines
Similar works from other Slovenian collections:
  1. Analysis of online machine translation services
  2. Tuning parameters in statistical machine translation
  3. ǂThe ǂrole of translation software-case study of slovenian-german glossary of computer terms
  4. Overview of free machine translation systems
  5. Applicability and challenges of using machine translation in translator training

Back