izpis_h1_title_alt

Schurova števila
ID Lamovec, Urška (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/5386/ This link opens in a new window

Abstract
V diplomskem delu podrobneje obravnavamo Schurov izrek o vsot-prostih particijah in definiramo n-to Schurovo število S(n) kot največje naravno število, za katerega obstaja razbitje množice {1,...,S(n)} na n disjunktnih vsot-prostih podmnožic. Zapišemo prvih nekaj znanih Schurovih števil in določimo meje, znotraj katerih se gibljejo vrednosti večjih, še neznanih Schurovih števil. Omenimo šibka Schurova števila. Schurov izrek formuliramo tudi kot problem barvanja in posledico Ramseyjeve teorije. Za konec si pogledamo, kako je Schurov izrek povezan z zadnjim Fermatovim izrekom. Pokažemo, na kakšen način je Schur poenostavil Dicksonovo trditev, da ima enakost x^n+y^n=z^n pri danem naravnem številu n > 2 netrivialne rešitve v Z_p za vsa dovolj velika praštevila p.

Language:Slovenian
Keywords:vsot-prosta množica
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2018
PID:20.500.12556/RUL-104340 This link opens in a new window
COBISS.SI-ID:12151113 This link opens in a new window
Publication date in RUL:09.10.2018
Views:1407
Downloads:233
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Schur Numbers
Abstract:
In the thesis, Schur's theorem on sum-free partitions is proven and Schur number S(n) is defined as the largest positive integer with the property that the set {1,...,S(n)} can be partitioned into n sum-free subsets. Values of known Schur numbers S(1) to S(5) are given as well as some upper and lower bounds for general S(n). Weak Schur numbers are also defined. Moreover, Schur's theorem is formulated as a graph coloring problem and presented as a corollary of Ramsey theorem. In conclusion, Schur's theorem is linked to Fermat's last theorem. Schur's simplification of Dickson's proof that equation x^n+y^n=z^n for fixed n > 2 has nontrivial solutions in Z_p for all sufficiently large prime p is given.

Keywords:sum-free set

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back