izpis_h1_title_alt

Množice nezveznosti realnih funkcij
ID Kos, Anja (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/5380/ This link opens in a new window

Abstract
V diplomskem delu se ukvarjamo predvsem z vprašanjem, katere podmnožice realnih števil so lahko množice točk nezveznosti neke realne funkcije ene spremenljivke. Pokažemo, da je množica točk nezveznosti vedno števna unija zaprtih množic, kar na primer pomeni, da ne obstaja realna funkcija, ki bi bila nezvezna natanko na množici iracionalnih števil. To pokažemo s pomočjo Bairovega izreka o kategorijah. Na koncu diplomskega dela pokažemo, da je limita po točkah zaporedja zveznih funkcij vedno zvezna na precej veliki množici.

Language:Slovenian
Keywords:zvezne funkcije
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2018
PID:20.500.12556/RUL-104334 This link opens in a new window
COBISS.SI-ID:12149577 This link opens in a new window
Publication date in RUL:09.10.2018
Views:1084
Downloads:201
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Discontinuity sets of real functions
Abstract:
In this diploma thesis, we are interested in understanding which subsets of real numbers can be sets of discontinuity of a real function of one variable. We show that any set of discontinuity is a countable union of closed sets, which, for example, excludes the possibility of an existence of a real function that is discontinuous precisely at irrational numbers. This is shown as an application of the Baire category theorem. In the last part of the thesis we show that the pointwise limit of a sequence of continuous functions is always continuous on a large subset of real numbers.

Keywords:continous functions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back