izpis_h1_title_alt

Robne vrednosti potenčnih vrst : diplomsko delo
ID Koprivc, Teja (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/5363 This link opens in a new window

Abstract
V diplomskem delu se bom ukvarjala predvsem z območjem konvergence kompleksnih potenčnih vrst. Za potenčne vrste obstaja maksimalen odprti disk, na katerem vrsta konvergira, bolj zapleteno pa je preveriti konvergenco vrste na robu tega diska in določiti točke z roba, v katerih ima vsota vrste lokalno holomorfno razširitev. Ogledali si bomo nekaj zanimivih primerov potenčnih vrst na kompleksnem disku in natančno obravnavali konvergenco na robu konvergenčnega diska. Pri razumevanju konvergence na robu si bomo pomagali z Abelovim izrekom, ki ga bomo v diplomski nalogi tudi dokazali.

Language:Slovenian
Keywords:enakomerna konvergenca, konvergenčni radij, konvergenčni kriteriji, Abelov izrek
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[T. Koprivc]
Year:2018
Number of pages:28 str.
PID:20.500.12556/RUL-104316 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:12117321 This link opens in a new window
Publication date in RUL:09.10.2018
Views:1211
Downloads:215
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Boundary behavior of power series
Abstract:
This diploma thesis will mostly focus on the problem of convergence of the complex power series. There is a maximum open disk for the power series, which the series converges, however, it is much more complicated to under- stand the convergence at boundary points of this disk and to determine at which points of the boundary has the series has a local holomorphic exten- sion. This thesis includes some interesting examples of the power series on a complex disk and some detailed description of a convergence at boundary points of the disk. For better understanding of the convergence at boundary points, we used and prove Abel’s theorem.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back