izpis_h1_title_alt

Takagijeva faktorizacija : diplomsko delo
ID Mežan, Rebeka (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window, ID Starčič, Tadej (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/5356 This link opens in a new window

Abstract
Diplomska naloga Takagijeva faktorizacija bralcu predstavi faktorizacijo kompleksno simetričnih matrik. Kompleksno simetrične matrike v splošnem ne moremo diagonalizirati, lahko pa pokažemo, da so unitarno T-kongruentne diagonalni matriki. Temu rečemo Takagijeva faktorizacija. V prvem poglavju so predstavljene splošne lastnosti matrik ter njihova diagonalizabilnost. Diagonalizacija ni nujno izvedljiva pri kompleksno ortogonalnih matrikah, medtem ko so realno simetrične in kompleksno hermitske matrike vedno diagonalizabilne. Pomemben izrek za razumevanje diagonalizacije in podobnosti je Schurov izrek, ki je v nadaljevanju opisan in dokazan. Kratek del diplomske naloge je posvečen opisu japonskega matematika Teijija Takagija, nato pa sledi glavni del naloge, obravnava Takagijeve faktorizacije.

Language:Slovenian
Keywords:matrike, podobnost matrik, diagonalizacija, Schurov izrek, Takagijeva faktorizacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[R. Mežan]
Year:2018
Number of pages:26 str.
PID:20.500.12556/RUL-104295 This link opens in a new window
UDC:512.643(043.2)
COBISS.SI-ID:12141385 This link opens in a new window
Publication date in RUL:09.10.2018
Views:1198
Downloads:235
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Takagi factorization
Abstract:
This diploma thesis, Takagi factorization, presents the reader a factorization of complex symmetric matrices. A complex symmetric matrix can not in general be diagonalizable but it can be showed, that it can always be unitary T- congruent to some diagonal matrix. That is called Takagi factorization. In the first chapter the basic properties of matrices and matrix diagonalizability are presented. A diagonalization is not always realisable in the case of a complex orthogonal matrix while for real symmetric and for complex Hermitian matrix the diagonalization always exists. An important theorem for understanding the process of diagonalization and similarity is Schur form. It is described and proved below. Short part of this dissertation is devoted to Japanese mathematician Teiji Takagi, followed by the main subject of this paper, discussion of Takagi factorization.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back