izpis_h1_title_alt

Krivulje s pitagorejskim hodografom in interpolacija : magistrsko delo
ID Kramer, Sabina (Author), ID Žagar, Emil (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (946,89 KB)
MD5: 4B2AA564210838880C7275963CACC018

Abstract
Na začetku bomo definirali osnovne lastnosti ravninskih parametričnih krivulj, kot so tangenta, ukrivuljenost, normala in paralelna krivulja. Potem se bomo posvetili polinomom v Bernsteinovi bazi. Na podlagi teh polinomov bomo definirali Bézierjeve krivulje in predstavili pomen kontrolnega poligona. Sledila bo interpolacija s kubičnimi Bézierjevimi krivuljami. Definirali bomo krivulje s pitagorejskim hodografom (PH krivulje). Opisali bomo njihove glavne lastnosti in predstavili formule za izračun kontrolnih točk. Nato se bomo ukvarjali z interpolacijo s PH krivuljami stopnje 5. Predstavili bomo kriterij za izbiro najboljše rešitve in konstruirali zlepke, ki jih bomo primerjali s kubičnimi zlepki. Konstruirali bomo paralelne krivulje in predstavili metodo za obrezovanje teh krivulj.

Language:Slovenian
Keywords:parametrična krivulja, tangentni vektor, ukrivljenost, paralelna krivulja, Bernsteinova baza, Bézierjeva krivulja, pitagorejski hodograf, PH krivulja, Hermiteova interpolacija, zlepek
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103997 This link opens in a new window
UDC:519.6
COBISS.SI-ID:18459225 This link opens in a new window
Publication date in RUL:30.09.2018
Views:2001
Downloads:395
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Pythagorean-Hodograph curves and interpolation
Abstract:
We will define basic parametric planar curve properties, like tangent vector, curvature, normal vector and offset. Then, we will describe polynomials in the Bernstein basis and use that concept for defining Bézier curves and control polygon. Interpolation with cubic Bézier will follow. We will define pythagorean-hodograph (PH) curves, describe their main properties and calculate control points. We will interpolate given data with the PH quintics and show a criteria for choosing the best solution. We will construct PH quintic splines and compare them to the ordinary cubic splines. We will finish with constructing offset curves and describe trimming procedure.

Keywords:parametric curve, tangent vector, curvature, offset curve, Bernstein basis, Bézier curve, pythagorean hodograph, PH curve, Hermite interpolation, spline

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back