izpis_h1_title_alt

Napovedovanje konceptov na podlagi toka dogodkov
ID NEMEC, ALEN (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,45 MB)
MD5: 745A807185AD75360858D4AE8DF5FF56

Abstract
Možnost napovedovanja prihodnjih dogodkov in njihovih posledic je privlačna ideja, a v praksi težko izvedljiva zaradi velikega števila možnih izidov. Ta diploma predstavlja poskus napovedovanja, ki temelji na predpostavki, da se vzorci iz preteklosti ponavljajo. Svetovne dogodke modeliramo kot skupine konceptov, na podlagi katerih jih gručimo v skupine povezanih dogodkov. Iz teh zgradimo podatkovno zbirko za namene napovedovanja, kjer vhodni atributi opisujejo koncepte, ki se pojavijo v posamezni gruči znotraj danega časovnega okna, ciljne oznake pa so koncepti, ki se pojavijo naslednji teden. Na podatkih ocenimo in primerjamo uspešnost različnih modelov za napovedovanje. Naši poskusi pokažejo, da takšno modeliranje povezav med koncepti prispeva koristne informacije za namene napovedovanja prihodnjih dogodkov.

Language:Slovenian
Keywords:novice, gručenje, podatkovno rudarjenje, napovedovanje, dogodki
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103939 This link opens in a new window
Publication date in RUL:28.09.2018
Views:1306
Downloads:192
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting concepts based on streams of events
Abstract:
Having the ability to predict the course of future events is an attractive idea, but difficult to achieve in practice because of the vast number of possibilities. This diploma presents an attempt at doing so based on the hypothesis that patterns of events from the past tend to repeat. We model real world events as groups of concepts. We cluster events into groups of related events. We then build a dataset from these clusters, where the attributes of each data point represent concepts that occur in a single cluster within a certain time window, and the target labels are concepts that occur the next week. We compare the effectiveness of several different prediction models. Our tests show that relationships between concepts contain useful information for predicting the future course of events.

Keywords:news, clustering, data mining, prediction, events

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back