izpis_h1_title_alt

Detekcija napak na materialih s periodično strukturo
ID KRUPIĆ, BILAL (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,45 MB)
MD5: 51051A1EDDA7B2FE5A19AEC6C15F4C71

Abstract
Razvili smo metodo strojnega vida, ki bi naj bila sposobna detektirati napake v materilalih, ki iskazujejo periodično strukturo. Metoda temelji na dvodimenzionalni Fourierjevi transformaciji. Naša osnovna predpostavka je, da pri Fourierjevi transformaciji slike vzorca, ki izkazuje periodično strukturo, dobimo veliko število vrhov, in majhno število vrhov, ko vzorec vsebuje napako. Vrhovi so zaznani z detektorjem MSER. Izhod detektorja MSER je število vrhov. Kot primer smo uporabili vzorce tekstila, v katere smo vnesli napake (cefranje, zbadanje, rezanje). Zajeli smo sistematično bazo slik, ter napake na tekstilnih vzorcih označili z zaključenimi poligoni. Na vsakem zaključenem poligonu smo izračunali očrtan pravokotnik, ki je bil vodilo, za izrez vsakega od vzorcev, ki smo jih uporabili za potrebe binarnega razvrščanja vzorcev na tiste brez napake in z napako. Za detekcijo napak smo kvalitativno ilustrirali delovanje detektorja napak, ki uporablja predstavljen razvrščevalnik ter metodo drsečega okna.

Language:Slovenian
Keywords:strojni vid, računalniški vid, tekstil, razvrščevanje, detekcija napak
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2018
PID:20.500.12556/RUL-103535 This link opens in a new window
Publication date in RUL:19.09.2018
Views:1126
Downloads:260
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detecting Defects in Materials That Exhibit Periodic Structure
Abstract:
We have developed a machine vision method that will be able to detect errors in materials that show a periodic structure. The method is based on a two-dimensional Fourier transform. Our basic assumption is that the Fourier transformation of the image that exhibits a periodic structure results in a pattern which contains a large number of peaks. Conversely, it contains a small number of peaks when the sample contains a defect, which disrupts the periodic structure. The peaks are detected by the MSER detector. The output of the MSER detector is the number of peaks. To illustrate and evaluate the proposed method, we used textile samples in which we created defects (tearing, puncturing, cutting). We systematically collected a database of images, and marked the defects in textile patterns as polygons. For each polygon we calculated the bounding box that was used in sample extraction from images. Samples were classified to those without defect and those containing a defect. For the detection of defects, we have qualitatively illustrated the operation of the error detector using the presented classifier and the sliding window method.

Keywords:machine vision, computer vision, textile, classification, defect detection

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back