izpis_h1_title_alt

Smaleova podkev : delo diplomskega seminarja
ID Žilavec, Mojca (Author), ID Kuzman, Uroš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,20 MB)
MD5: 53CBE34F3782868327C29E786CBB0DFB

Abstract
V svojem diplomskem delu sem raziskovala dinamični sistem preslikave, ki se imenuje Smaleova podkev. Le-ta je podana s preprostim predpisom, ki pravokotniku v ravnini priredi lik podkvaste oblike, vendar pa je njena dinamika izrazito kaotična. Natančneje, izkaže se, da je kaotična že njena skrčitev na del orbit, ki se začnejo v Cantorjevi podmnožici začetnega pravokotnika in in in jih opišemo s prostorom zaporedij (simbolično dinamiko). Smaleovo podkev sem uporabila tudi za raziskovanje pojava homoklinske zanke - trasverzalnega preseka stabilne in nestabilne mnogoterosti v planarnih dinamičnih sistemih.

Language:Slovenian
Keywords:dinamični sistem, negibna ali fiksna točka, kaotični sistem, periodična točka, občutljiva odvisnost od začetnih pogojev, tranzitivnost, podkvasta preslikava, simbolična dinamika, avtonomni sistem, orbita, predorbita, sedlo, stabilna mnogoterost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103320 This link opens in a new window
UDC:517.9
COBISS.SI-ID:18436953 This link opens in a new window
Publication date in RUL:16.09.2018
Views:1727
Downloads:317
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Horseshoe map
Abstract:
In my dissertation I have studied a discrete dynamic system given by a map, called the Smale Horseshoe map. The latter is determined by a simple rule, which tranforms a rectangle into a subtler shape and admits an extremely chaotic dynamic behaviour. More precisely, it turns out that this system is chaotic already when we restrict our attention to a part of orbits, which begin in a Cantor set of the initial rectangle and can be described with a space of sequences (symbolic dynamics). I used Smale's Horseshoe map also to explore an appearance of a homoclinic tangle - transversal intersection of the stable and unstable manifold.

Keywords:dynamic system, fixed point, chaotic system, periodic point, sensitive dependence on initial data, transitivity, horseshoe map, symbolic dynamics, autonomous system, forward orbit, backward orbit, saddle, stable manifold

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back