izpis_h1_title_alt

Avtomatsko prepoznavanje vedenjskih vzorcev : delo diplomskega seminarja
ID Molan, Martin (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Žnidaršič, Martin (Comentor)

.pdfPDF - Presentation file, Download (3,88 MB)
MD5: 8B178AF9EB9BD08AA20CC88F9EB4B9AC

Abstract
Naloga obravnava izgradnjo napovednih modelov na osnovi realnih podatkov. Cilj opisanih postopkov je modeliranje in napovedovanje obnašanja igralcev v igralniški industriji. Osnova za izdelavo napovednega modela je priprava podatkov za algoritme strojnega učenja. Uspešnost obdelave realnih podatkov z nečistočami in napakami pomembno vpliva na možnost izgradnje smiselnega napovednega modela. Prvi cilj modeliranja vedenja je izgradnja modela, ki napoveduje, ali bo igralec naredil drugi depozit. Natančnost razvitega modela zadostuje potrebam domene in je primerna za implementacijo v praksi. Drugi cilj modeliranja je izgradnja širšega napovednega modela, ki opisuje razvoj posameznikovih igralnih navad. Predstavljena je smiselnost drugega pristopa in njegova skladnost z zahtevami domene. Preizkus napovedne moči širšega napovednega modela presega okvire te naloge saj je dolgotrajna in zahteva veliko specifičnega domenskega znanja.

Language:Slovenian
Keywords:strojno učenje, nadzorovano učenje, nenadzorovano učenje, napovedno modeliranje, modeliranje vedenja, igralniška industrija, umetna inteligenca, odločitveno drevo, naključni gozd, segmentacija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-103237 This link opens in a new window
UDC:004.8
COBISS.SI-ID:18435161 This link opens in a new window
Publication date in RUL:15.09.2018
Views:2248
Downloads:294
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic recognition of behavioral patterns
Abstract:
This thesis explores development of predictive models on real life datasets. The goal of approaches, described in this thesis, is modeling and prediction of players' behavior in casino industry. The basis for creation of predictive model is preparation of real life datasets for machine learning algorithms. Sensible curation of real life datasets that include missing values, inaccuracies and other noise determines the possibility for development of accurate predictive models. First goal of predictive behavioral modeling is creation of automated prediction model that predicts if the player will make a second deposit. Accuracy of developed model is sufficient for implementation in real life casino operation. Second goal is to develop broader predictive model that describes and predicts development of player’s behavior. Sensibility of proposed approach and its compliance with domain demands is presented. Real predictive strength of proposed model is out of scope of this work as it requires a lot of additional domain knowledge.

Keywords:machine learning, supervised learning, unsupervised learning, predictive modeling, behavioral modeling, casino industry, artificial intelligence, decision tree, random forest, clustering

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back