Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Ocenjevanje standardne napake in intervalov zaupanja z metodo bootstrap
ID
GAŠPARAC, GRETA
(
Author
),
ID
Štrumbelj, Erik
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,13 MB)
MD5: 0EFEB4DF2CBA04A81C7943108B54926C
Image galllery
Abstract
V diplomskem delu predstavimo metodo bootstrap, ki jo uvrščamo v družino metod samovzorčenja ter je preprostejša in bolj intuitivna alternativa tradicionalnim statističnim metodam za ocenjevanje negotovosti. Osredotočimo se na neparametrično različico metode. Opišemo njene lastnosti in jih predstavimo s praktičnimi primeri s področja strojnega učenja - ocenjevanje in primerjava različnih modelov. Izpostavimo tudi šibke točke metode. Predstavimo in primerjamo tri intervale zaupanja bootstrap: standardnega normalnega z uporabo standardne napake bootstrap in dva klasična intervala bootstrap, centilnega in BCa. Pričakovano se v večini primerov najbolje obnese BCa.
Language:
Slovenian
Keywords:
metoda bootstrap
,
standardna napaka
,
intervali zaupanja
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2018
PID:
20.500.12556/RUL-103206
Publication date in RUL:
14.09.2018
Views:
1650
Downloads:
480
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GAŠPARAC, GRETA, 2018,
Ocenjevanje standardne napake in intervalov zaupanja z metodo bootstrap
[online]. Bachelor’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103206
Copy citation
Share:
Secondary language
Language:
English
Title:
Boostraping standard errors and confidence intervals
Abstract:
We introduce the reader to the bootstrap, a simple and flexible resampling-based alternative for quantifying uncertainty. We describe the basic characteristics of the non-parametric bootstrap and illustrate its practical behaviour with simulations in the context of a typical task in machine learning - estimating and comparing the performance of different prediction models. We also present some of the method's weaknesses. We introduce and compare three standard intervals: the standard normal using bootstrap standard error and two more typical bootstrap confidence intervals, the percentile and the BCa interval. As theory suggests, the BCa performs the best over a wide range of situations.
Keywords:
bootstrap
,
standard error
,
confidence intervals
Similar documents
Similar works from RUL:
Konstrukcija intervalov zaupanja z metodami ponovnega vzorčenja - kljukčeva metoda
Strategije cenovne diskriminacije
Confidence intervals for the Mann-Whitney test
Smallest confidence intervals for one binomial proportion
Parameters' confidence intervals evaluation for heterogeneous strain field specimen designs by using digital image correlation
Similar works from other Slovenian collections:
THE INFLUENCE OF CONFIDENCE ON DECISION MAKING ABOUT THE CHOICE OF AN INSURANCE BROKER
Nedenarno spodbujanje inovativnosti
Merjenje dolžine v prvem razredu
Analiza kakovosti odkovkov z metodo FMEA
Using association rules for classification - A comparison of different algorithms
Back