izpis_h1_title_alt

Generativni globoki modeli slik uhljev
ID Bizjak, Miha (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,49 MB)
MD5: 9CFCA230860BFFFA0DC93535BC80BC89

Abstract
Za dobro delovanje potrebujejo globoke nevronske mreže veliko podatkov. V primeru biometrične modalnosti uhljev - največje anotirane baze slik uhljev v nekontroliranem okolju zajemajo nekaj tisoč slik, kar je premalo za globoko učenje in razpoznavo. Ta problem skušamo rešiti z uporabo generativnih nevronskih mrež za obogatitev baze. Implementiramo dva tipa generativnih nevronskih mrež: generativno mrežo in variacijski avtokodirnik. Obe mreži naučimo s pomočjo slik iz obstoječe baze in z vsako generiramo množico umetnih podatkov (slike uhljev). Z vsako od teh množic nato učimo mreže za razpoznavo in primerjamo rezultate. Kljub uporabi umetno generiranih slik, ne uspemo doseči visoke stopnje razpoznave na bazi AWE-v1, vseeno pa so opazne izboljšave v primerjavi z rezultati učenja razpoznave brez umetno generiranih slik.

Language:Slovenian
Keywords:nevronske mreže, globoko učenje, obogatitev podatkov, biometrija
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103196 This link opens in a new window
Publication date in RUL:14.09.2018
Views:1994
Downloads:365
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generative deep models for ear images
Abstract:
Deep neural networks require large amounts of data to perform well. In the case of the biometrical modality of the human ear, the largest annotated databases of images of ears in an uncontrolled environment consist of a few thousand images, which is insufficient for recognition using deep learning. We try to solve this problem using generative neural networks for data augmentation. We implement two types of generative neural networks: a generative network and a variational autoencoder. We train both networks on images from the existing database and then use them to generate a new set of artificial data (images of ears) with each. We then use each of these datasets to train neural networks for recognition and compare the results. Even using artificially generated images, we do not manage to achieve a high recognition rate on the AWE-v1 ear database. Despite that, there is a noticeable improvement compared to results of training for recognition without using generated data.

Keywords:neural networks, deep learning, data augmentation, biometrics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back