Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
NAPOVEDOVANJE OCEN PRODUKTOV V SPLETNI TRGOVINI Z METODAMI STROJNEGA UČENJA
ID
Gombač, Jošt
(
Author
),
ID
Todorovski, Ljupčo
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,97 MB)
MD5: 72094459EC4B69064BFF2F64488C8694
Image galllery
Abstract
Razvijalci se pri razvoju in izboljševanju svojih produktov pogosto zanašajo na povratne informacije kupcev. Eden izmed virov teh informacij so spletne trgovine, ki kupcem omogočajo recenziranje in ocenjevanje izdelkov in storitev. Zaradi velikega števila spletnih platform in recenzij pa sta zbiranje in analiza tovrstnih informacij težka in počasna procesa. Pogosto je nemogoče pregledati vse recenzije ali pa se zapletemo v podrobnosti, zaradi česar izgubimo pogled na celotno sliko informacij, ki so jih uporabniki želeli sporočiti. Diplomsko delo obravnava uporabo strojnega učenja pri analizi recenzij uporabnikov spletnih trgovin z namenom napovedovanja številčnih ocen iz besedil recenzij. V povezavi s tem je bila razvita programska rešitev, ki s kombinacijo algoritmov za obdelavo naravnega jezika in metod strojnega učenja napoveduje uporabnikovo oceno. Osrednji cilj raziskave je pridobiti empirični dokaz, da so za nalogo analiziranja besedil v naravnem jeziku in napovedovanja ocene iz njih metode strojnega učenja bolj točne od preprostih analiz sentimenta in statistične obravnave. Rezultati empiričnega preverjanja kažejo na to, da so metode strojnega učenja za izbrano nalogo boljše od preprostih analiz sentimenta s statistično obravnavo glede na več meril za vrednotenje napovedi.
Language:
Slovenian
Keywords:
umetna inteligenca
,
obdelava naravnega jezika
,
strojno učenje
,
klasifikacija
,
nevronske mreže
,
odločitvena drevesa
,
naključni gozdovi
,
analiza sentimenta
Work type:
Bachelor thesis/paper
Organization:
FU - Faculty of Administration
Year:
2018
PID:
20.500.12556/RUL-103188
Publication date in RUL:
14.09.2018
Views:
3223
Downloads:
361
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GOMBAČ, Jošt, 2018,
NAPOVEDOVANJE OCEN PRODUKTOV V SPLETNI TRGOVINI Z METODAMI STROJNEGA UČENJA
[online]. Bachelor’s thesis. [Accessed 3 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=103188
Copy citation
Share:
Secondary language
Language:
English
Title:
PREDICTING PRODUCT RATINGS IN A WEB STORE WITH MACHINE LEARNING METHODS
Abstract:
Product developers often rely on customer feedback when developing and improving their products. One source of such feedback are Web stores that enable customers to review and rate products and services. Given the large number of Web stores and reviews, the process of gathering and analyzing the feedback information is usually tedious and slow. It is often impossible to examine all the available reviews and the results of their analysis provides us with too much details. The later derails us from seeing the big picture or the main message of feedback that customers wanted to communicate with us. The thesis applies machine learning methods to the task of processing customer reviews available in the Web stores with a purpose of giving predictions of their corresponding numerical ratings. In particular, we developed a solution that combines natural language processing algorithms with machine learning methods to predict customer ratings. The central thesis goal is to empirically prove that machine learning methods are more accurate than simple sentiment analysis and statistical methods when predicting customer ratings from natural language reviews. Results of empirical evaluation show that on the selected prediction task machine learning methods perform better than simple sentiment analysis and statistical treatment with respect to multiple evaluation metrics.
Keywords:
artificial intelligence
,
natural language processing
,
machine learning
,
classification
,
neural networks
,
decision trees
,
random forest
,
sentiment analysis
Similar documents
Similar works from RUL:
Physically motivated water modeling in control-oriented polymer electrolyte membrane fuel cell stack models
Holistic approach to chemical degradation of Nafion membranes in fuel cells
Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells
Real-time capable transient model of liquid water dynamics in proton exchange membrane fuel cells
Combined heat and power system based on high-temperature proton exchange membrane fuel cells
Similar works from other Slovenian collections:
Reactivation system for proton-exchange membrane fuel-cells
PEM fuel cells
Back