izpis_h1_title_alt

FighterZero : pristop samo-igranja za učenje igranja pretepaške igre z globokim spodbujevalnim učenjem : magistrsko delo
ID Vitek, Matej (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,96 MB)
MD5: B1CCC1B688CBCDCF8FE337035F147355

Abstract
Področje globokega učenja je v zadnjem desetletju doživelo precejšen razcvet. Uporablja se za reševanje premnogih problemov, v zadnjih petih letih pa precej tudi za igranje iger. Dva pomembna dosežka sta bila globoke Q-mreže (DQN) in AlphaZero. DQN se je naučila igrati klasične igre za Atari 2600 (Pong, Space Invaders, itd.), AlphaZero pa se je s samo-igranjem naučil igrati šah, šogi in Go. Mi smo na temelju AlphaZero poskusili zgraditi agenta FighterZero, ki bi se prav tako s samo-igranjem naučil igrati pretepaške računalniške igre. Rezultati so bili manj uspešni, kot smo pričakovali, saj se je časovna zahtevnost izkazala za nepremagljivo oviro.

Language:Slovenian
Keywords:umetna inteligenca, inteligentni agent, igre, samo-igranje, globoko učenje, spodbujevalno učenje, drevesno preiskovanje Monte Carlo, nevronske mreže, razvoj iger
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103017 This link opens in a new window
UDC:004
COBISS.SI-ID:18432089 This link opens in a new window
Publication date in RUL:13.09.2018
Views:2121
Downloads:375
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:FighterZero: a self-playing deep reinforcement learning agent for fighting game AI
Abstract:
Deep learning has been a field of great academic interest and substantial breakthroughs over the last decade. Its applications are many and over the last five years it has spread also to the field of game playing, owing largely to two chief accomplishments of Google's DeepMind team: Deep Q-Networks (DQN), which learned to play classic Atari 2600 games, and AlphaZero, which learned, strictly through self-play, to play the board games chess, shogi and Go. In this thesis we attempted to build on the success of AlphaZero by adapting its self-playing architecture to fighting games, a popular genre of video games. The results were, however, less successful than we had expected and hoped, as the time constraints proved to be an insurmountable obstacle.

Keywords:artificial intelligence, intelligent agent, games, self-playing, deep learning, reinforcement learning, Monte Carlo tree search, neural networks, game development

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back