izpis_h1_title_alt

Tropska geometrija : delo diplomskega seminarja
ID Černe, Nejc (Author), ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,61 MB)
MD5: 68C7187A744A60C02DDF7258AA234F41

Abstract
V diplomskem delu obravnavamo osnove tropske geometrije. Uvedemo pojem tropskega polkolobarja in spoznamo, kako nad tem polkolobarjem tvorimo polinome, kako je definirana ničla tropskega polinoma in kakšne so tropske krivulje, ki jih ta definicija porodi. Za tropske polinome ene spremenljivke dokažemo osnovni izrek tropske algebre. Ogledamo si nekaj lastnosti tropskih krivulj in spoznamo, kaj določa njihova oglišča, kaj določa njihove robove in kaj so njihove dualne subdivizije. Omenimo tudi njihovo povezavo z uravnoteženimi grafi in pokažemo, da lahko za določen primer tropskih krivulj Bézoutjev izrek enostavno prenesemo tudi na tropske krivulje in ga zanje tudi dokažemo. Na koncu si ogledamo še amebe kompleksnih krivulj in kako povezujejo kompleksne krivulje s tropskimi. Omenimo tudi osnovni izrek tropske algebraične geometrije in ga navežemo na pridobljeno znanje.

Language:Slovenian
Keywords:tropska geometrija, tropski polkolobar, tropski polinom, tropska krivulja, Bézoutjev izrek
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-102999 This link opens in a new window
UDC:514.7
COBISS.SI-ID:18433113 This link opens in a new window
Publication date in RUL:13.09.2018
Views:1299
Downloads:247
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Tropical Geometry
Abstract:
In this thesis, we examine the basic concepts of tropical geometry. We define the tropical semiring, form polynomials over this semiring, define roots of tropical polynomials and examine tropical curves that this definition gives rise to. We prove the fundamental theorem of tropical algebra for the tropical polynomials of one variable. Furthermore, we take a look at some of the properties of tropical curves. We define their edges, their vertices and their dual subdivisions. We mention their connection with balanced graphs and prove Bézout theorem for a particular case of tropical curves. In the end of the thesis, we examine amoebas of complex curves and how they connect complex curves with tropical ones. We mention the fundamental theorem of tropical algebraic geometry and relate it to the newly acquired knowledge.

Keywords:tropical geometry, tropical semiring, tropical polynomial, tropical curve, Bézout's theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back